Interdependence of Monetary Policy and Exchange Rates

Amartya Lahiri

UBC and CAFRAL

FEDAI-Mumbai October 11, 2017

Introduction

- ▶ Exchange rates are a key macroeconomic variable
- Policymakers, businesses, traders and academics all pay attention
- Understandable since it affects a number of macro variables
 - current account
 - ▶ foreign exchange reserves
 - bank and firm balance sheets
 - ▶ other variables indirectly

Questions

- ▶ Three questions surround exchange rates
 - ▶ what factors determine exchange rate behavior?
 - ▶ how does monetary policy affect exchange rates?
 - ▶ what should the policy be towards exchange rates?
- ► Focus today is on first two
- ▶ Focus is on monthly/quarterly frequency, not daily

Exchange Rate Puzzles Everywhere

- ▶ Exchange rate behavior represents puzzles everywhere
- ▶ Profit logic cannot seem to explain standard medium term exchange rate movement
- ▶ Effects of monetary policy on exchange rates is also puzzling
- ▶ Some puzzles are solvable, others are harder

Exchange Rate Determination

- ▶ Two basic approaches to exchange rate determination
 - ► logic of goods trade
 - ▶ logic of asset trade
- Exchange rate pricing follows some arbitrage relationship
 - ▶ goods trade: purchasing power parity (PPP)
 - ▶ asset trade: interest parity (IRP)

Purchasing Power Parity

- ▶ PPP: $P = EP^*$
- ► Cost of living should be changing at same rate across countries when expressed in the same currency
- ► This preserves the relative purchasing power of the rupee compared with the dollar
- ▶ Holds better for developing countries
- ▶ Not a good fit for developed countries: excess volatility puzzle

The Developing World: Rupee against the USD

The Developed World: USD against the Euro

Interest Parity Conditions

- ► Two conditions:
 - covered interest parity
 - uncovered interest parity
- ► Covered interest parity typically holds
- ▶ Uncovered interest parity fails
 - forward premium anomaly
 - carry trade profits
- ► Puzzle???

Monetary Policy and Exchange Rates

- ▶ Old question: how does monetary policy affect exchange rates?
- ► Conventional wisdom: monetary tightening (higher interest rates) appreciate the currency
- ▶ Evidence mostly for developed countries: it holds

New Evidence on Monetary Policy and Exchange Rates

- ▶ Joint work by Hnatkovska-Lahiri-Vegh (2016)
- ▶ Look at a broader set of 72 countries
 - ▶ 25 developed and 47 developing
 - ▶ monthly data for 1974-2010
- ▶ Re-examine the empirical relationship between monetary policy and exchange rates

Empirical approach

- Monetary policy proxied by interest rates
 - ► T-Bill rates
 - ▶ Discount rate (if T-Bill not available)
- ▶ Exchange rates are defined as LCU/USD
- ▶ Examine relationship using simple correlations and VARs

Exchange rate regimes

- ▶ Use flexible exchange rates regimes taken from Reinhart-Rogoff (2004)
- ▶ A country could have multiple flexible rate episodes during the sample period
 - ▶ minimum 24 months data for each episode
 - ▶ 80 country-episodes pairs in total: 25 developed, 55 developing

Simple correlations

	Developed	Developing
$corr(\ln E_t, i_t - i_t^{us})$		
mean	-0.09	0.24
median	-0.08	0.36
$corr(\Delta_t \ln E, \Delta_t (i - i^{us}))$		
mean	-0.10	0.13
median	-0.11	0.13
$\ln E_t = \beta_0 + \beta_1 (i_t - i_t^{us}) + \varepsilon_t$		
$\max(\hat{\beta}_1)$	-0.74	2.19
95% c.i. (\hat{eta}_1)	[-0.94; -0.54]	[1.99; 2.39]
$\Delta_t \ln E_t = \alpha_0 + \alpha_1 \Delta_t (i_t - i_t^{us}) + u_t$		
$\operatorname{mean}(\hat{lpha}_1)$	-0.44	0.24
95% c.i.($\hat{\alpha}_1$)	[-0.57; -0.31]	[0.09; 0.38]

Vector AutoRegressions (VARs): Exogenous interest rate rule

Bivariate VAR specification:

• ordering: $i - i^{US}$, $\ln E$

	(a). Levels		
	impact	1 month	3 months
Industrial countries: appreciation	84%	88%	84%
Developing countries: depreciation	75%	75%	75%
	(b). First-differences		
	impact	1 month	3 months
Industrial countries: appreciation	84%	88%	52%
Developing countries: depreciation	70%	62%	60%

Exchange Rate Response to Monetary Policy

- ▶ Developing countries behave differently from developed countries
- ▶ Developing country response is contrary to convention wisdom
- ► Exchange rate response puzzle???

Explanations?

- Central banks in different countries may be responding to domestic conditions differently
- ▶ Different ability of monetary authorities to precommit to not responding to exchange rate changes in two groups of countries?
- Risk premium shocks hitting developed and developing countries may be different

VARs: Endogenous interest rate rules

- ▶ Specification 2. With price level: $\ln P, i i^{US}, \ln E$
- ▶ Specification 3. With CPI inflation: $\pi, i i^{US}, \ln E$
- ▶ Specification 4. With expected inflation: $\pi_{t+1} \pi_{t+1}^{US}, i_t i_t^{US}, \ln E_t$
- ▶ Specification 5. With risk premium shocks: $rp, i i^{US}, \ln E$
- ▶ Specification 6. With output: $\ln y, i i^{US}, \ln E$
- ▶ Specification 7. All shocks: $rp, \ln y, \ln P, i i^{US}, \ln E$
- ► Specification 8. Structural VAR:
 - ightharpoonup interest rates have no long-run effects on the real exchange rate

VAR results

Impulse response of exchange rate to interest rate shock

		(a). Levels		
	impact	1 month	3 months	
(2): $\ln P, i - i^{US}, \ln E$				
Industrial: appreciation	82%	82%	82%	
Developing: depreciation	76%	67%	74%	
(3): $\pi - \pi^{US}, i - i^{US}, \ln E$				
Industrial: appreciation	82%	82%	82%	
Developing: depreciation	67%	69%	69%	
(4): $\pi_{t+1} - \pi_{t+1}^{US}, i_t - i_t^{US}, \ln E_t$				
Industrial: appreciation	82%	82%	82%	
Developing: depreciation	71%	69%	71%	
(5): $rp, i - i^{U\tilde{S}}, \ln E$				
Industrial: appreciation	72%	84%	84%	
Developing: depreciation	72%	72%	69%	
(6): $\ln y, i - i^{US}, \ln E$				
Industrial: appreciation	84%	89%	84%	
Developing: depreciation	64%	73%	64%	
(7): $rp, \ln y, \ln P, i - i^{US}, \ln E$				
Industrial: appreciation	83%	92%	92%	
Developing: depreciation	70%	60%	70%	

Panel VARs: Impulse response (levels)

Figure: Exchange rate response to interest rate shock

Resolving the Puzzle

- ▶ Higher interest rates typically have three effects
 - increased demand for domestic currency denominated assets: liquidity demand effect
 - higher cost of credit: output effect
 - ▶ increase in debt service: fiscal effect
- ▶ Liquidity demand effect: appreciates currency
- Credit and fiscal effects depreciate currency
- ▶ Net effect depends on relative strengths of these offsetting forces

Key to puzzle: Liquidity Demand effect

Liquidity demand effect much stronger in developed countries:

Dependent variable: 1-appreciation, 0-depreciation

	(i)	(ii)	(iii)	(iv)
1-developing, 0-developed	-0.4073***	-0.1835	0.0362	0.2452
	(0.1658)	(0.2763)	(0.2577)	(0.3467)
d/h		0.0440		0.0460
,		(0.0336)		(0.0498)
m/y			0.0545***	0.0551***
			(0.0164)	(0.0169)
N	36	36	36	36

Main Takeaway

- Financial development and financial deepening are key factors underlying puzzle
- ▶ Developed countries have much higher deposit base which strengthens the positive effect
- ► The lower dependence on bank finance and better fiscal institutions also help

Inflation Targeting and Exchange Rates

- Since early 1990s inflation targeting has become popular amongst central banks
- ▶ India recently joined this group
- Key principle of pure inflation targeting
 - only target of policy is the (CPI) inflation rate
 - ▶ target inflation rate and policy instrument to achieve target should be clearly communicated
 - ▶ no other variable will be targeted by monetary policy

Implications of Inflation Targeting Policy

- Policy is *supposed* to ignore employment and output developments
- ▶ Implicit idea: stable inflation is best way to attain output stability
- ► Monetary transmission from interest rates to demand (and output) will affect inflation
- ▶ Exchange rate is supposed to *float freely* to stabilize relative prices and output markets

Exchange Rate Behavior of Inflation Targeters

- ▶ How do markets price exchange rates in countries without an exchange rate target?
- ► Example of Canada
- ▶ 1.1.74-31.12.91: Flexible rates but not inflation targeter
 - ► Correlation between exchange rate and oil prices: +43 percent
 - ► CAD tended to **depreciate** when world oil prices rise
- ▶ 1.1.92-present: Inflation targeting period
 - ► Correlation between exchange rate and oil prices: -82 percent
 - ▶ CAD tends to **appreciate** when the world oil price rises

Inflation Targeters and Oil Prices

- Canadian dollar appears to have become an oil currency since inflation targeting
- ▶ What about other inflation targeting countries?
- ▶ I looked at 27 countries during the period 1.1.74 to 31.7.17
- ▶ Countries adopted inflation targeting at various points during this period

Baseline Results

Variables	Exchange Rate	Exchange Rate
Oil Price	7.987***	13.90***
Oil Price*Inflation Target	-9.190***	-15.03***
Oil Net Exports share		-0.767***
Observations	9,221	5,976
***p < 0.01 **p < 0.05 *p < 0.1		

Puzzle???

- ▶ What is going on?
- Possibility: markets need a nominal anchor to price
 - ▶ it could be either a quantitative target or a price target
 - traditional monetary policy has a quantity target for either money supply or for output
- ▶ Pure inflation targeting does not provide any anchor
- ▶ Targeting inflation may not be enough to anchor currency value
- ▶ Markets could be using oil prices as a substitute anchor

Implications

- ▶ Exchange rate behavior of inflation targeters raises issues
 - rising oil prices may imply appreciating currencies of inflation targeters
 - ▶ if INR stays stable against the USD then rupee may depreciate against inflation targeting currencies
 - overall effective nominal exchange rate would tend to depreciate
- Even an implicit exchange rate target could help to stabilize the currency

Conclusions

- ► Exchange rate behavior in the medium/long term is often puzzling
- ▶ Some of the puzzles are resolvable with structural approaches
- ▶ Others are more difficult and require further study
- Anchoring of expectations for exchange rates may be an important factor that monetary policy may need to take into account