Corporate Debt Structure, Precautionary Savings, and Investment Dynamics

> Jasmine Xiao University of Notre Dame

CAFRAL Annual Conference

December 8, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

Key question

How do financial shocks affect aggregate investment?

- Financial frictions + 'small' firms with high default risks
- One type of debt instrument
- Mechanism: shock propagates via a contraction in credit supply

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Introduction

Key question

How do financial shocks affect aggregate investment?

- ▶ Financial frictions + 'small' firms with high default risks
- One type of debt instrument
- Mechanism: shock propagates via a contraction in credit supply

This paper

- Financial frictions + 'larger' firms with lower default risks
- Multiple types of debt instruments
- New mechanism: shock propagates via firms' balance sheet adjustment

Introduction

Key question

How do financial shocks affect aggregate investment?

- Financial frictions + 'small' firms with high default risks
- One type of debt instrument
- Mechanism: shock propagates via a contraction in credit supply

This paper

- Financial frictions + 'larger' firms with lower default risks
- Multiple types of debt instruments
- New mechanism: shock propagates via firms' balance sheet adjustment

Motivation

- Public firms substituted from loans to bonds during crisis
 - e.g. Becker and Ivashina (2014); Adrian, Colla and Shin (2012)
- Liquid assets to total assets: 7% (highest since 1960s)
- Account for \approx 70% of aggregate investment in the U.S.

Motivation: The Great Recession

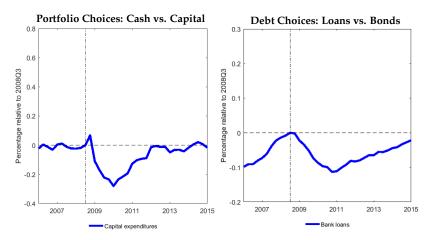


Figure: Balance Sheet Policies of U.S. Nonfinancial Corporate Businesses

Source: Compustat & Capital IQ

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

-

4 A 1

→ ∃ →

Motivation: The Great Recession

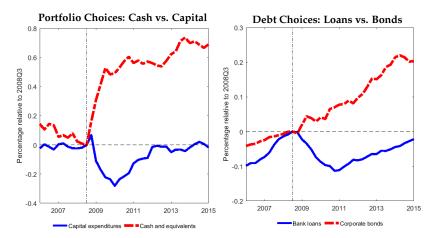


Figure: Balance Sheet Policies of U.S. Nonfinancial Corporate Businesses

Source: Compustat & Capital IQ

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

A (1) > A (2) > A

Motivation: The Great Recession

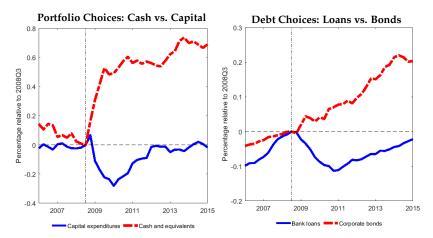
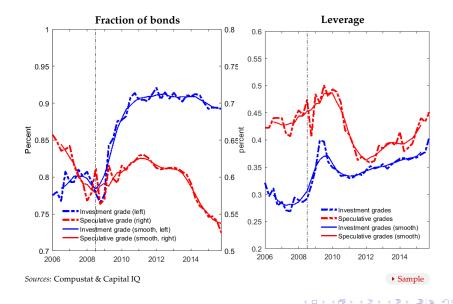
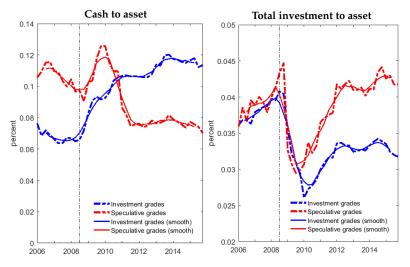



Figure: Balance Sheet Policies of U.S. Nonfinancial Corporate Businesses

Source: Compustat & Capital IQ

Question: How do firms' balance sheets propagate financial shocks?


New Micro-Level Evidence (1): Firm Heterogeneity in Liabilities

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

3/18

New Micro-Level Evidence (2): Firm Heterogeneity in Assets

Sources: Compustat & Capital IQ

ヘロト 人間 とくほ とくほど

Firm-Level Evidence

- ► 'Larger' firms (investment): Δ Leverage ≈ 0 Δ Investment $\downarrow \downarrow$ Δ Cash $\uparrow \uparrow$
- ► 'Smaller' firms (speculative): Δ Leverage $\downarrow \downarrow \Delta$ Investment $\downarrow \Delta$ Cash \downarrow
- ⇒ Change in debt and change in investment not one-to-one!

Firm-Level Evidence

- ► 'Larger' firms (investment): Δ Leverage ≈ 0 Δ Investment $\downarrow \downarrow$ Δ Cash $\uparrow \uparrow$
- ► 'Smaller' firms (speculative): Δ Leverage $\downarrow \downarrow \Delta$ Investment $\downarrow \Delta$ Cash \downarrow
- \implies Change in debt and change in investment not one-to-one!

"Borrowing-to-Save" Mechanism

- Risk-neutral firms with (short-term) defaultable debt
- Incomplete market
 - Cash & capital affect default threshold differently
 - Trade-off: growth vs. self-insurance against default
- (New) environment:
 - A sequence of uninsurable shocks
 - Cannot adjust asset- and liability-side simultaneously at all times

... in the Context of Debt Substitution

Loans vs. bonds: ability to restructure in financial distress vs. intermediation cost in normal times (Crouzet, 2017)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

... in the Context of Debt Substitution

Loans vs. bonds: ability to restructure in financial distress vs. intermediation cost in normal times (Crouzet, 2017)

Transmission of financial shock:

- Liability-side: mixed-debt structure \rightarrow bond-only \implies (De)leverage effect: total borrowing $\Downarrow \Downarrow$
- $\circ \ \ \text{Asset-side: risky capital} \rightarrow \text{safe assets}$
 - \implies Partially offsets (de)leverage effect: total borrowing $\Downarrow \cancel{k}$

 \implies Portfolio reallocation effect: investment $\Downarrow \Downarrow$

... in the Context of Debt Substitution

Loans vs. bonds: ability to restructure in financial distress vs. intermediation cost in normal times (Crouzet, 2017)

Transmission of financial shock:

- Liability-side: mixed-debt structure \rightarrow bond-only \implies (De)leverage effect: total borrowing $\Downarrow \Downarrow$
- \circ Asset-side: risky capital \rightarrow safe assets
 - \implies Partially offsets (de)leverage effect: total borrowing $\Downarrow \cancel{k}$
 - \implies Portfolio reallocation effect: investment $\Downarrow \Downarrow$

Quantitative Implications

- ► Financial constraint channel Firms of high default risks: Total debt ↓↓↓, Investment ↓↓
- ▶ Precautionary savings channel Firms of intermediate default risks: Total debt ↓, Investment ↓↓↓

▶ Literature

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

... in the Context of Debt Substitution

Loans vs. bonds: ability to restructure in financial distress vs. intermediation cost in normal times (Crouzet, 2017)

Transmission of financial shock:

- Liability-side: mixed-debt structure \rightarrow bond-only \implies (De)leverage effect: total borrowing $\Downarrow \Downarrow$
- \circ Asset-side: risky capital \rightarrow safe assets
 - \implies Partially offsets (de)leverage effect: total borrowing $\Downarrow \cancel{k}$
 - \implies Portfolio reallocation effect: investment $\Downarrow \Downarrow$

Quantitative Implications

- ► Financial constraint channel (60%) Firms of high default risks: Total debt ↓↓↓, Investment ↓↓
- ▶ Precautionary savings channel (40%) Firms of intermediate default risks: Total debt ↓, Investment ↓↓↓

▶ Literature

Outline

1. Introduction

2. "Borrow-to-Save" Mechanism

3. Structural Model of Firm Dynamics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 4. Quantitative Implications
- 5. Conclusion

Simple Example: Timing

Figure: Timing in one period

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへで

Simple Example: Timing



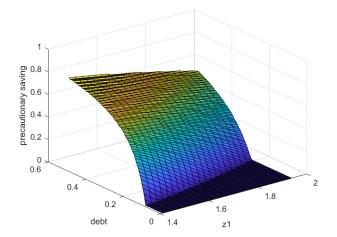
Figure: Timing in one period

- Key assumption 1: Firms can reoptimize assets, but not liabilities, after the first shock
 - **Trade-off:** higher profits conditional on survival vs. higher probability of survival evidence
- Key assumption 2: Liquidation value of the firm is given by $\chi \pi'$, where $0 \le \chi < 1$

Simple Example: Asset Allocation

- ▶ Firm with net worth *e*
- Shock \hat{z}_1 has realized & borrowing *b* has been made
- Rewrite: $s = \frac{a}{N}$ and $1 s = \frac{k}{N}$, where N = e + b

$$\max_{s(b,\hat{z}_1,e)} \mathbf{E}_{z_2} \pi = \int_{z_2(\hat{z}_1,s)}^{+\infty} \Big[\hat{z}_1 z_2 (1-s)^{\alpha} N^{\alpha} + (1+r) s N - (1+r_b) b \Big] dF(z_2) + \int_{-\infty}^{z_2(\hat{z}_1,s)} - D dF(z_2),$$

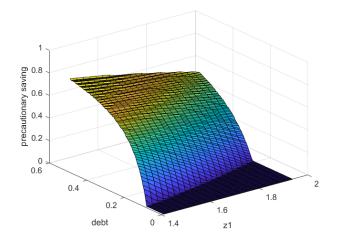

s.t.

$$\begin{aligned} \textbf{[1]} \ \ \underline{z}_2 &= \frac{(1+r_b)b - (1+r)sN}{\hat{z}_1(1-s)^{\alpha}N^{\alpha}} \\ \textbf{[2]} \ \ 1+r_b &= \frac{(1+r)b}{\int_{z_1}[1-F(\underline{z}_2(z_1))]dF(z_1)} \\ \textbf{[3]} \ \ s \in [0,1] \end{aligned}$$

Simplification: \implies Exogenous default cost (D) \implies DWL = 1 ($\chi = 1$)

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

Simple Example: Asset Allocation



Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

문 님

イロト イポト イヨト イヨト

Simple Example: Asset Allocation

▶ s^* increasing in debt (b) and decreasing in realized return on capital \hat{z}_1

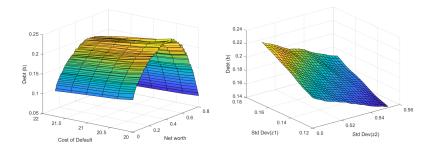
Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

ъ

イロト イポト イヨト イヨト

Simple Example: How Much to Borrow?

- Before any shock is realized
- Substitute $s^*(b, z_1, e)$ and $r_b(b, e, s^*)$ in:


$$\begin{split} \max_{b} \mathrm{E}_{z_{1},z_{2}}(\pi) &= \int_{z_{1}}^{+\infty} \int_{z_{2}(z_{1},s^{*})}^{+\infty} \Big[z_{1}z_{2}(1-s^{*})^{\alpha}N^{\alpha} + (1+r)s^{*}N - (1+r_{b})b \Big] dF(z_{2})dF(z_{1}) \\ &+ \int_{z_{1}} \int_{0}^{z_{2}(z_{1},s^{*})} -DdF(z_{2})dF(z_{1}), \end{split}$$

s.t.

$$[1] \ \underline{z}_2 = \frac{(1+r_b)b - (1+r)sN}{z_1(1-s)^{\alpha}N^{\alpha}}$$
$$[2] \ 1+r_b = \frac{(1+r)b}{\int_{z_1}[1-F(\underline{z}_2(z_1))]dF(z_1)}$$
$$[3] \ s^*(b, z_1, e) \text{ from asset allocation stage}$$

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 王言 のへぐ

Simple Example: How Much to Borrow?

- non-monotonic in net worth (e)
- decreasing in default cost (D)

- increasing in risk from z₁
- decreasing in risk from z₂

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

-

Outline

1. Introduction

2. "Borrow-to-Save" Mechanism

3. Structural Model of Firm Dynamics

4. Quantitative Implications

5. Conclusion

 Demography: household, intermediate goods firms (incumbent & entrants), final goods firms, financial intermediaries (market lenders & bank lenders)

- Demography: household, intermediate goods firms (incumbent & entrants), final goods firms, financial intermediaries (market lenders & bank lenders)
- Technology:

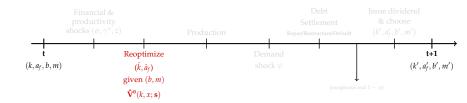
 - Intermediate goods firms: y = zk^α (0 < α < 1)
 Final goods firms: Y = (∫ ψy^{ζ-1}/_ζ)^{ζ-1}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

- Demography: household, intermediate goods firms (incumbent & entrants), final goods firms, financial intermediaries (market lenders & bank lenders)
- Technology:

 - Intermediate goods firms: y = zk^α (0 < α < 1)
 Final goods firms: Y = (∫ ψy^{ζ-1}/_ζ)^{ζ-1}
- Intermediate goods firms:
 - Short-term state-uncontingent debt from intermediaries
 - Can self-insure via cash holdings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

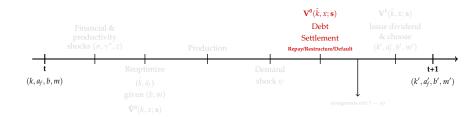

- Demography: household, intermediate goods firms (incumbent & entrants), final goods firms, financial intermediaries (market lenders & bank lenders)
- Technology:

 - Intermediate goods firms: y = zk^α (0 < α < 1)
 Final goods firms: Y = (∫ ψy^{ζ-1}/_ζ)^{ζ-1}
- Intermediate goods firms:
 - Short-term state-uncontingent debt from intermediaries
 - Can self-insure via cash holdings
- Financial intermediaries: market lenders and bank lenders
 - Borrow deposits from households and firms, and lend to firms
 - Trade-off: (Crouzet, 2017)
 - \rightarrow Key assumption 3: Only bank debt can be restructured
 - \rightarrow Key assumption 4: Wedge in intermediation costs γ^*

- Demography: household, intermediate goods firms (incumbent & entrants), final goods firms, financial intermediaries (market lenders & bank lenders)
- Technology:

 - Intermediate goods firms: y = zk^α (0 < α < 1)
 Final goods firms: Y = (∫ ψy^{ζ-1}/_ζ)^{ζ-1}
- Intermediate goods firms:
 - Short-term state-uncontingent debt from intermediaries
 - Can self-insure via cash holdings
- Financial intermediaries: market lenders and bank lenders
 - Borrow deposits from households and firms, and lend to firms
 - Trade-off: (Crouzet, 2017)
 - \rightarrow Key assumption 3: Only bank debt can be restructured
 - \rightarrow Key assumption 4: Wedge in intermediation costs γ^*
- **Markov processes:** (z, γ^*, ψ)

Intermediate Goods' Firms



$$\hat{V}^{0}(k, a_{f}, \psi, z; \mathbf{s}) = \max_{\hat{k}, \hat{a}_{f}} V^{0}(\hat{k}, x; \mathbf{s})$$

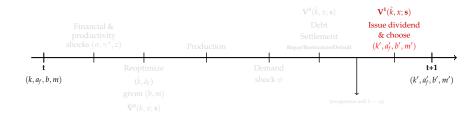
subject to: $\hat{k} + \hat{a}_{f} + \underbrace{g(\hat{k}, k)}_{\text{Capital adj. cost}} = k + a_{f},$

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 王言 のへぐ

Intermediate Goods' Firms

$$V^{0}(\hat{k}, x; \mathbf{s}) = \max \left\{ \underbrace{V^{0}_{P}(\hat{k}, x; \mathbf{s})}_{\text{Repay}}, \underbrace{V^{0}_{R}(\hat{k}, x_{R}; \mathbf{s})}_{\text{Restructure}}, \underbrace{0}_{\text{Default}} \right\}.$$


where:

$$V_l^0(\hat{k}, x; \mathbf{s}) = \underbrace{(1 - \eta)n_l}_{\text{exogenously exit}} + \underbrace{\eta V^1(\hat{k}, x; \mathbf{s})}_{\text{survive exit shock}}$$

exogenously exit

and
$$n_l = p(\psi)y + p_k^- (1 - \delta)\hat{k} - F_o\hat{k} + \hat{a}_f - b_l - m$$
 where $l \in \{P, R\}$
 $x = p(\psi)y(z) - F_o\hat{k} - b - m + \hat{a}_f$ • Debt Settlement Outcomes

Intermediate Goods' Firms

$$V_{i}^{1}(\hat{k}, x; \mathbf{s}) = \max_{v, k', b', m', a_{f}'} \left\{ d + \mathbb{E} \left[\lambda(\mathbf{s}, \mathbf{s}') \sum_{j=1}^{N} p_{i,j} \max_{\hat{k}', \hat{a}_{f}'} \left\{ V_{P,j}^{0}(\hat{k}', x_{f}'; \mathbf{s}'), V_{R,j}^{0}(\hat{k}', x_{R,j}'; \mathbf{s}'), 0 \right\} \middle| \mathbf{s} \right] \right\}$$

subject to:

Non-negative dividend constraint: Khan and Thomas (2013)

$$d = x - \upsilon g(k', \hat{k}) + q^b b' + q^m m' - q^a a'_f \ge 0$$

debt prices, capital adj. costs, and $\mathbf{s}' = \Gamma(\mathbf{s})$

Entry & exit

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 王言 のへぐ

Closing the Model: Final Goods' Firms

Static problem:

$$\max_{y(s)} Y - \left(\int_{s} \psi y(s)^{\frac{\zeta-1}{\zeta}} \mu(ds)\right)^{\frac{\zeta}{\zeta-1}}$$

subject to:

$$Y = \left(\int \psi y(s)^{\frac{\zeta-1}{\zeta}} \mu(ds)\right)^{\frac{\zeta}{\zeta-1}}$$

Idiosyncratic demand:

$$\log \psi' = \rho_{\psi} \log \psi + \log \epsilon'_{\psi}; \quad \log \epsilon'_{\psi} \sim N(-0.5\sigma_{\psi}^2, \sigma_{\psi}^2)$$

▶ **Relative demand** for good produced by firm $s = [z, \hat{k}, x, \psi]$

$$y(s) = \left(\frac{\psi}{p(s)}\right)^{\zeta} \Upsilon$$

Market Clearing
 ・ く同 ・ く き ト き き ショミ のなの

Outline

1. Introduction

- 2. "Borrow-to-Save" Mechanism
- 3. Structural Model of Firm Dynamics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 4. Quantitative Implications
- 5. Conclusion

Calibration

Targeted moments

Statistic	Parameter	Model	Target
Firm-level data			
[1] Fraction of bank debt	$\overline{\gamma}^*$ (Wedge in intermediation costs)	35%	31%
[2] Leverage	p_{k}^{-} (Resale value of capital)	39%	37%
[3] Exit rate	F_{o} (Operating cost)	9.6%	8.8%
[4] Entry rate	c_e (Entry cost)	9.6%	9.6%
[5] Entrants' relative size	ω (Pareto exponent)	21%	18%
[6] Exiters' relative size	σ_{ψ} (Vol. of idiosyncratic demand)	39%	41%
Aggregate data			
[7] Bond spread	χ (liquidation efficiency)	2.6%	2.8%

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Calibration

Targeted moments

Statistic	Parameter	Model	Target
Firm-level data			
[1] Fraction of bank debt	$\overline{\gamma}^*$ (Wedge in intermediation costs)	35%	31%
[2] Leverage	p_{k}^{-} (Resale value of capital)	39%	37%
[3] Exit rate	F_{o} (Operating cost)	9.6%	8.8%
[4] Entry rate	c_e (Entry cost)	9.6%	9.6%
[5] Entrants' relative size	ω (Pareto exponent)	21%	18%
[6] Exiters' relative size	σ_{ψ} (Vol. of idiosyncratic demand)	39%	41%
Aggregate data			
[7] Bond spread	χ (liquidation efficiency)	2.6%	2.8%

Untargeted moments

- Firm distribution
- Cross-sectional patterns in: cash-to-asset, debt composition, leverage

Model Checks

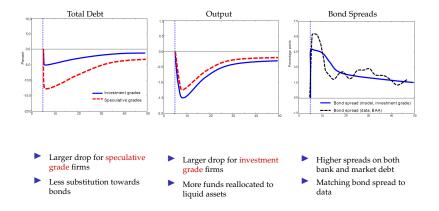
<ロト < 個 > < 目 > < 目 > 三日 の Q @

Calibration

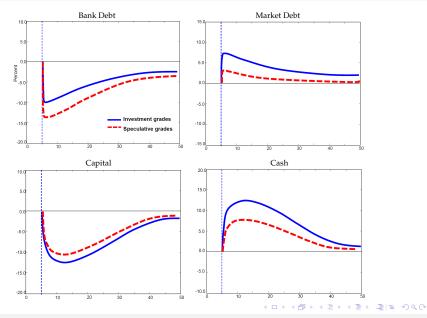
Targeted moments

Statistic	Parameter	Model	Target
Firm-level data			
[1] Fraction of bank debt	$\bar{\gamma}^*$ (Wedge in intermediation costs)	35%	31%
[2] Leverage	p_{k}^{-} (Resale value of capital)	39%	37%
[3] Exit rate	F_o (Operating cost)	9.6%	8.8%
[4] Entry rate	c_e (Entry cost)	9.6%	9.6%
[5] Entrants' relative size	ω (Pareto exponent)	21%	18%
[6] Exiters' relative size	σ_{ψ} (Vol. of idiosyncratic demand)	39%	41%
Aggregate data			
[7] Bond spread	χ (liquidation efficiency)	2.6%	2.8%

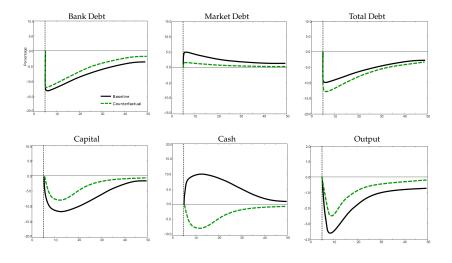
Untargeted moments


- Firm distribution
 Model Checks
- Cross-sectional patterns in: cash-to-asset, debt composition, leverage

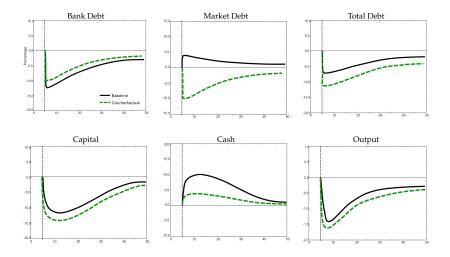
Aggregate shock: bank credit supply


Senior Loan Officer Opinion Survey of Bank Lending Practices (SLOOS)

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

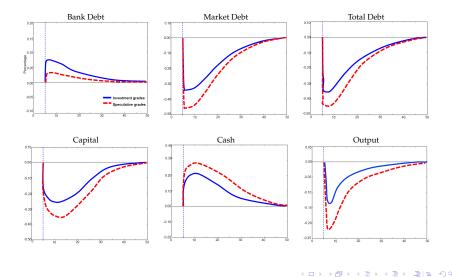

Financial Shock: Baseline Results

Financial Shock: Baseline Results


Counterfactual (1): Precautionary Savings Channel

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >


Counterfactual (2): Role of Bond Market

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Counterfactual (3): Uncertainty Shock

Outline

1. Introduction

- 2. "Borrow-to-Save" Mechanism
- 3. Structural Model of Firm Dynamics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 4. Quantitative Implications
- 5. Conclusion

Conclusion

Main results

- Evidence: 'Larger' firms hoarded more cash and invested less
- ▶ Mechanism: Precautionary savings associated with debt substitution
- ► Aggregate implication: 40% of decline in aggregate investment

 \implies Firms' balance sheet adjustment quantitatively important for understanding transmission of financial shocks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Conclusion

Main results

- Evidence: 'Larger' firms hoarded more cash and invested less
- ▶ Mechanism: Precautionary savings associated with debt substitution
- ► Aggregate implication: 40% of decline in aggregate investment

 \implies Firms' balance sheet adjustment quantitatively important for understanding transmission of financial shocks

Other results

- Bond market can act as a "spare tyre" to bank-based intermediation
- Financial frictions relatively more important than real frictions
- Counterfactual responses to uncertainty shocks when examining the differences between 'small' and 'large' firms

Firm-level data: Compustat and Capital IQ (2006-2015)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Firm-level data: Compustat and Capital IQ (2006-2015)
- US non-financial and non-utility public firms
 - With data on debt structure
 - With Standard & Poor's ratings
 - Exclude the 25 largest cash holders

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

- Firm-level data: Compustat and Capital IQ (2006-2015)
- US non-financial and non-utility public firms
 - With data on debt structure
 - With Standard & Poor's ratings
 - Exclude the 25 largest cash holders
- ▶ Final sample: 938 unique firms
 - By total assets: 71% of US non-financial non-utilities public firms
 - Firm-level variables winsorized at the 1st and 99th percentiles

- Firm-level data: Compustat and Capital IQ (2006-2015)
- US non-financial and non-utility public firms
 - With data on debt structure
 - With Standard & Poor's ratings
 - Exclude the 25 largest cash holders
- ▶ Final sample: 938 unique firms
 - By total assets: 71% of US non-financial non-utilities public firms
 - Firm-level variables winsorized at the 1st and 99th percentiles

Two subsamples:

- By credit ratings: investment-grade vs. speculative-grade
- By size of total assets (robustness)

Back

Related Literature

1. Macroeconomic implications of debt heterogeneity

• Adrian, Colla, and Shin (2012); De Fiore and Uhlig (2015); Crouzet (2015)

New: "Precautionary savings" channel in a structural model

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 王言 のへぐ

Related Literature

1. Macroeconomic implications of debt heterogeneity

Adrian, Colla, and Shin (2012); De Fiore and Uhlig (2015); Crouzet (2015)
 New: "Precautionary savings" channel in a structural model

2. Microfoundations of corporate debt structure

Diamond (1991); Rajan (1992); Bolton and Scharfstein (1996)
 New: Implications for firm dynamics & aggregate fluctuations

Related Literature

1. Macroeconomic implications of debt heterogeneity

Adrian, Colla, and Shin (2012); De Fiore and Uhlig (2015); Crouzet (2015)
 New: "Precautionary savings" channel in a structural model

2. Microfoundations of corporate debt structure

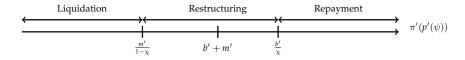
• Diamond (1991); Rajan (1992); Bolton and Scharfstein (1996)

New: Implications for firm dynamics & aggregate fluctuations

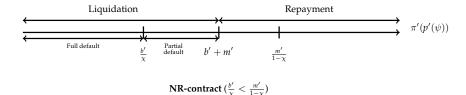
- 3. Financial frictions and propagation mechanisms
 - **Credit constraint:** Bernanke, Gertler and Gilchrist (1999); Kiyotaki and Moore (1997)
 - **Firm dynamics:** Cooley and Quadrini (2001); Clementi and Hopenhayn (2006); Hennessy and Whited (2007); Khan and Thomas (2013)
 - **Debt vs. equity:** Jermann and Quadrini (2012); Covas and Den Haan (2012); Begenau and Salomao (2016)

New: Propagation through firms' balance sheet adjustment

Back

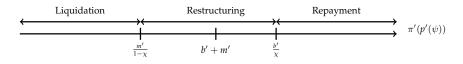

Appendix: Variations in Cash Holdings & Debt Finance

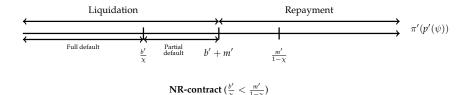
	Cash	Ma	Market debt		Bank debt		Total debt	
	stdev mean	stdev mean	p-value	stdev mean	p-value	stdev mean	p-value	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Q1	0.57	0.21	(0.00)	0.43	(0.00)	0.20	(0.00)	
Q2	0.53	0.24	(0.00)	0.41	(0.00)	0.18	(0.00)	
Q3	0.54	0.26	(0.00)	0.39	(0.00)	0.19	(0.00)	
Q4	0.58	0.31	(0.00)	0.42	(0.00)	0.22	(0.00)	
Full sample	0.56	0.28	(0.00)	0.40	(0.00)	0.19	(0.00)	


Sources: Compustat & Capital IQ

Back

Debt Settlement Outcomes


R-contract $(\frac{b'}{\chi} \ge \frac{m'}{1-\chi})$


Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへで

Debt Settlement Outcomes

R-contract $(\frac{b'}{\chi} \ge \frac{m'}{1-\chi})$

- Restructured bank debt $b'_R = \chi \pi'$
- Firm's liquidation value $V'_L = 0$

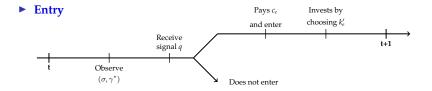
Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

Firm Dynamics: Entry and Exit

Exit

$$\delta^{e}(\mu(s)) \equiv \int \left(\underbrace{F(\underline{\psi})}_{\text{liquidations}} + \underbrace{\eta \Big(1 - F(\underline{\psi})\Big)}_{\text{exogenous exits}} \right) \mu(ds)$$

where $ds = [dz, d\hat{k}, dx, d\psi]$

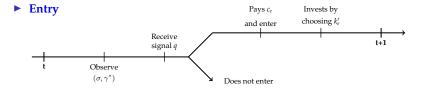

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Firm Dynamics: Entry and Exit

Exit

 $\delta^{e}(\mu(s)) \equiv \int \left(\underbrace{F(\underline{\psi})}_{\text{liquidations}} + \underbrace{\eta(1 - F(\underline{\psi}))}_{\text{exogenous exits}}\right) \mu(ds)$

where $ds = [dz, d\hat{k}, dx, d\psi]$


Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

Firm Dynamics: Entry and Exit

Exit

 $\delta^{e}(\mu(s)) \equiv \int \left(\underbrace{F(\underline{\psi})}_{\text{liquidations}} + \underbrace{\eta(1 - F(\underline{\psi}))}_{\text{exogenous exits}}\right) \mu(ds)$

where $ds = [dz, d\hat{k}, dx, d\psi]$

• t + 1 productivity and demand shocks depend on signal q

• Value of an entrant

$$V_e(q; \mathbf{s}) = \max_{k'_e} \left\{ -\gamma^e k'_e + \mathrm{E} \left[\lambda(\mathbf{s}, \mathbf{s}') \sum_{j=1}^N p_{i,j} V_j^1(z', k'_e, x'_e; \mathbf{s}') \Big| \mathbf{s}
ight]
ight\}$$

• Entry condition: $V_e(q^*; \mathbf{s}) = c_e$

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

 $\bullet \Box \models \bullet \blacksquare \blacksquare \models \bullet \blacksquare \blacksquare \models \bullet \blacksquare \blacksquare \blacksquare Back =$

Market Clearing

Goods market clearing:

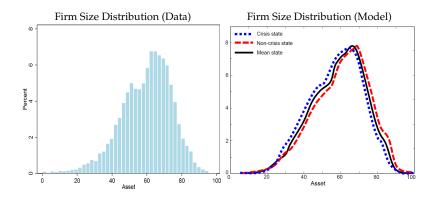
$$c(\mathbf{s}) = Y(\mathbf{s}) - \int \underbrace{\upsilon(s; \mathbf{s}) \left[g(k'(s; \mathbf{s}), \hat{k}) + g(\hat{k}(s; \mathbf{s}), k) \right] \mu(ds)}_{\text{capital adj. costs}} - \underbrace{\gamma^{b} \int b'(s; \mathbf{s}) \mu(ds)}_{\text{bank intermediation costs}} - \underbrace{\gamma^{m} \int m'(s; \mathbf{s}) \mu(ds)}_{\text{market intermediation costs}} - \underbrace{\int c_{e} \mu_{e}(ds)}_{\text{entry costs}} - \underbrace{\int \mathbf{1}_{\psi' \leq \underline{\psi}'} \times (1 - \chi) y(s; \mathbf{s}) \mu(ds)}_{\text{default costs}}$$

Deposits market clearing:

$$\underbrace{a'_h(\mathbf{s})}_{a_h(\mathbf{s})} + \int \underbrace{a'_f(s;\mathbf{s})\mu(ds)}_{a_h(\mathbf{s})} = a'_b(\mathbf{s}) + a'_m(\mathbf{s})$$

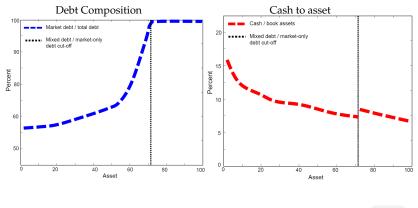
households' savings

firms' savings


Debt market clearing:

$$\int b'(s;\mathbf{s})\mu(ds) = a'_b(\mathbf{s})$$
 and $\int m'(s;\mathbf{s})\mu(ds) = a'_m(\mathbf{s})$

Back


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへで

Model Predictions (1): Firm Distribution

Jasmine Xiao (Notre Dame), "Corporate Debt Structure, Precautionary Savings, and Investment Dynamics"

Model Predictions (2): Financial Policies in Steady State

Back

15

イロト イポト イヨト イヨト