# Uncertainty Shocks, Financial Frictions and Business Cycle Asymmetries across Countries

Pratiti Chatterjee

CAFRAL 2017

1/33

Uncertainty Shocks, Financial Frictions and Business Cycle Asymmetries across Countries

## Uncertainty in Macroeconomics

• Measurement/Definition:

Proxies such as VIX, volatility of stock market returns, dispersion of forecasts etc. in empirical analysis and stochastic volatility in theoretical models

- Empirical regularity observed by various scholars<sup>1</sup>:
  - 1 Increase in uncertainty leads to a simultaneous decline in C, I and Y
  - 2 The effects are larger for emerging countries in comparison to advanced countries
  - **3** The impact of uncertainty shocks are largely countercyclical

<sup>&</sup>lt;sup>1</sup>Bloom (2009), Jurado, Ludwigson, and Ng (2015), Swallow and Cespedes (2013), Caggiano, Castelnuovo, Groshenny (2014), Chatterjee (2017)

#### Impulse Responses to a 1% Shock to Uncertainty in Recessions



3 / 33

< 분▶ 된 번 이 Q (안

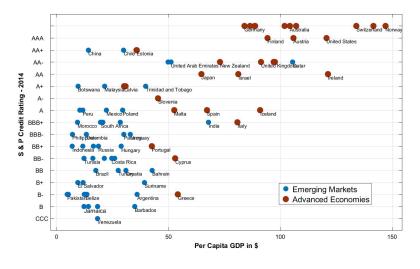
# Motivation for this paper

- Reconcile the empirical differences characterizing the impact of uncertainty shocks across AEs and EMs provide micro-foundations generating the asymmetry explain causes of excess volatility in EMs
- Extending the framework for analyzing uncertainty to an open economy model addressing all three empirical features
  - Existing works focus on explaining the simultaneousness decline in C, I, and Y in closed economy models fitted to match characteristics of AEs like the U.S.

三日 のへの

# Connections to Existing Literature

- Uncertainty as a driver of business cycle fluctuations in closed economy models
  - Bloom (2009), Bloom et al (2017), Basu and Bundick (2017),
- Uncertainty shocks in international macroeconomics
  - FV-GQ-RR-Uribe (2011), Swallow and Cespedes (2013)
- Emerging country business cycles excess volatility
  - Differences in shocks Aguiar and Gopinath (2007) and differences in fundamental features Neumeyer and Perri (2005),
- Financial frictions/Interaction bw country fundamentals and borr. costs
  - Bernanke, Gertler and Gilchrist (1999), Uribe and Yue (2006), Gertler Gilchrist and Natalucci (2007), Fernandez and Gulan (2015),


<=> = |= √ < ∩

# Model Outline

- Small Open economy (SOE) New Keynesian Model with 3 extra ingredients
  - 1 Financial Accelerator captures varying degrees of financial frictions across Advanced Economies and Emerging Countries - Bernanke, Gerlter, Gilchrist (1999) - Credit Ratings
  - 2 Uncertainty Shocks time varying volatility of aggregate productivity and household discount factor - Basu and Bundick (2017), FV-GQ-RR-Uribe (2011) - Shocks to second moment
  - 3 Solved using third order approximation capturing precautionary response to uncertainty (Andreasen et al 2017) Model Solution
- SOE features Gertler, Gilchrist and Natalucci (2007), Monacelli (2005)

▲ Ξ ► Ξ Ξ · · · ○ Q ()

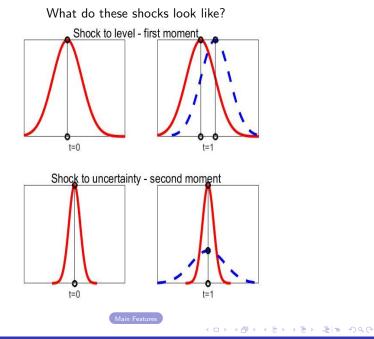
Difference in country fundamentals - higher borrowing costs in emerging countries





▲ Ξ ► Ξ Ξ · · · ○ Q ()

## Uncertainty Shocks


Shock to hh intertemporal discount factor  $(z_t)$  and aggr. productivity in production func. of wholesale goods for entrepreneurs  $(a_t)$ 

$$a_t = (1 - \rho_a)\overline{A} + \rho_a a_{t-1} + \boldsymbol{\sigma}_t^{\boldsymbol{a}} u_t^a$$
$$z_t = (1 - \rho_z)\overline{z} + \rho_z z_{t-1} + \boldsymbol{\sigma}_t^{\boldsymbol{z}} u_t^z$$

$$\begin{split} \boldsymbol{\sigma_t^a} &= (1 - \rho_{\sigma}^a)\overline{\sigma^a} + \rho_{\sigma}^a \sigma_{t-1}^a + \eta_C \underbrace{\boldsymbol{u_t^C}}_{Common} \\ \boldsymbol{\sigma_t^z} &= (1 - \rho_{\sigma}^z)\overline{\sigma^z} + \rho_{\sigma}^z \sigma_{t-1}^z + \eta_C \underbrace{\boldsymbol{u_t^C}}_{Common} \end{split}$$

• 
$$u_t^C \stackrel{\text{iid}}{=} (0, 1)$$
  
•  $\overline{\sigma^a}, \overline{\sigma^z}$  - average level of uncertainty,  $\eta_C$  - extent of stochastic volatility

3 = 1 - 0 Q (P



Uncertainty Shocks, Financial Frictions and Business Cycle Asymmetries across Countries

# Numerical solution

- Uncertainty shocks property of higher order moments
- $1^{st}$  order solution exhibits certainty equivalence no role for precautionary behavior
- $2^{nd}$  order solution std. dev of shocks affects steady state no effect on model dynamics Schmidt-Grohè and Uribe 2004
- Consider at least a  $3^{rd}$  approximation for uncertainty to matter use solution technique suggested in Andreasen, Fernandez-Villaverde and Rubio-Ramirez (2016)

Main Features

三日 のへの

## Environment

- 5 agents in the model economy
  - 1 Households
  - 2 Entrepreneurs
  - 3 Capital Producers
  - 4 Retailers
  - 5 Central Bank
  - Foreign sector
  - Uncertainty Shocks

三日 のへで

-

Benchmark SOE model - following Monacelli (2005). Key players:

- Households:
  - **1** Consume  $(C_t)$ , supply labor  $(L_t)$ , save in domestic  $(b_t)$  and foreign assets  $(F_t^*)$
  - 2 Utility function is additively separable in habit adjusted consumption (h) and labor with CRRA preferences parameter ( $\rho$ )
  - 3 Incomplete asset markets with portfolio holding costs domestic  $(\phi_B)$ , foreign  $(\phi_F^*)$
  - Consumption CES aggregate of domestic goods (C<sub>H,t</sub>) and imports (C<sub>F,t</sub>)
  - **5** Exogenous shock to hh discount factor  $(z_t)$

▲ Ξ ► Ξ Ξ · · · ○ < ○</p>

#### Entrepreneurs:

- **1** Raise resources to fund capital  $(K_t)$  combining net-worth they own  $(N_t)$  and foreign currency denominated debt  $(D_t)$ 
  - Face financial frictions in international capital markets modeled using the financial accelerator mechanism
  - Borrowing costs  $R_t^* k_t^{\nu}$  with  $k_t = \frac{Q_t K_t}{N_t}$ -  $\nu^{Emerging} > \nu^{Advanced}$
- 2 Capital becomes effective with a period lag in production
- Oroduce wholesale goods by hiring labor from hhs with capital that they own using CRS technology
- Cobb-Douglas production function contains shock to aggregate productivity (a<sub>t</sub>)

< ∃ ▶ ∃|= ∽Q@

#### Capital Producers

- Covert investment to capital capital goods face inv. adjustment costs
- 2 Investment is a CES aggregate of domestic goods  $(I_{H,t})$  and imports  $(I_{F,t})$
- Retailers
  - **1** Domestic retailers buy wholesale goods from entrepreneurs, differentiate them and sell final good for  $P_{H,t}$  to hhs, capital producers and ROW as exports  $(C_{H,t}^*)$
  - **2** Retailers of imported goods buy wholesale goods from ROW, differentiate them and sell final good for  $P_{F,t}$  to hhs and capital producers
  - **3** Both retailers face nominal rigidities while selling the final good

<=> = |= √ < ∩

Prices

**1** CPI  $(P_t)$  - CES aggregate of GDP deflator  $(P_{H,t})$  and Import Price Index  $(P_{F,t})$ 

• Central Bank:

1 Conducts monetary policy according to Taylor rule  $(R_t)$ 

- Foreign Sector
  - 1 Approximated as rest of world
  - 2 Evolves exogenously of the small open economy in concern
  - 3 Exports no rigidities Law of One Price holds

#### Exogenous processes

- **1** Shock to hh inter-temporal discount factor  $(z_t)$
- Shock to aggregate productivity in production function of wholesale goods for entrepreneurs (a<sub>t</sub>)

#### • Notion of uncertainty

- 1 Time varying volatility of shock to household preferences and aggregate productivity process
- 2 Standard deviation of shocks follow a correlated structure

= 900

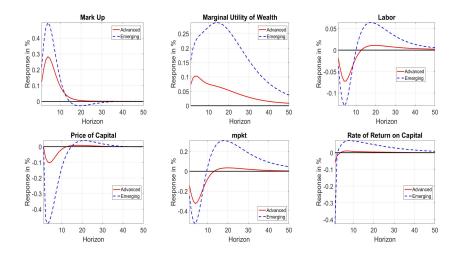
## Important Equilibrium Conditions

Marginal Financing Condition

$$E_t R_{t+1}^K = R_t^* (k_t)^{\nu} E_t \frac{q_{t+1}}{q_t}$$

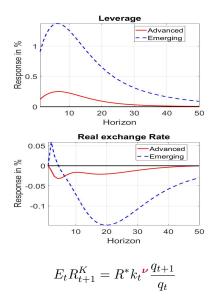
- For a given value of leverage  $k_t$  a higher value of  $\nu$  will imply a lower equilibrium value of capital  $K_t$
- Foreign currency denominated debt depreciation of currency will increase leverage  $k_t$  by eroding value of capital  $(V_t)$  -

$$V_t = \left[ R_t^K Q_{t-1} K_{t-1} - R^* (k_{t-1})^{\nu} q_t D_{t-1} \right]$$


∃▶ ∃|= ∽२०

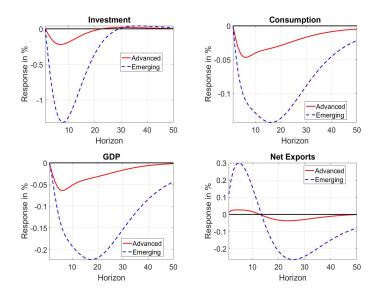
## Main findings - outline

- 1 Transmission of uncertainty shock in model using baseline calibration
  - Explore model features in replicating stylized facts 1 and 2
- 2 Estimate interaction of financial frictions and uncertainty shocks along with key behavioral parameters in recessionary episodes for advanced and emerging countries


3 = 3 9 9 P

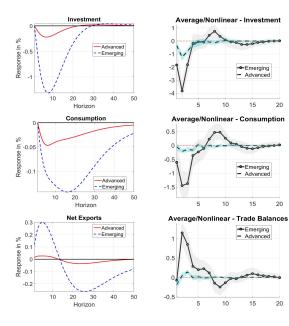
## Transmission of uncertainty shock




▲ 토 ▶ 토 토 = • • • • •

3




三日 のへで

★国社



三日 のへで

 $\equiv \rightarrow$ 



# Summarizing findings

- Successfully generated stylized fact 1 and 2
  - Simultaneous decline in C,I,Y
  - Emerging countries experience an amplified decline
- Next, estimate key parameters that guide the differences in response during recessions

= 900

# Estimating the strength of the financial frictions channel in generating business cycle asymmetries

ELE SOG

- Implement Impulse Response Matching technique limited information method - using model implied and empirically generated IRFs in recessions to uncertainty shocks
- Use the Smooth Transition Vector Auto Regression model to get the recession specific shock Details
- Compute Generalized Impulse Response Functions (GIRFs) using local projection technique from Jorda (2005) using shock from step 1

< ∃ ▶ ∃|= ∽Q@

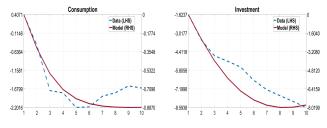
## Impulse Response Function Matching Estimator

$$\begin{pmatrix} \hat{\phi}_1(\overline{\phi}, h) \\ \hat{\phi}_2(\overline{\phi}, h) \\ \cdots \\ \hat{\phi}_{n_1}(\overline{\phi}, h) \end{pmatrix} = \arg \min_{\hat{\phi}_1(\overline{\phi}, h), \dots, \hat{\phi}_{n_1}(\overline{\phi}, h)} [\hat{\gamma} - g(\hat{\phi}, \overline{\phi}, h)]' \hat{\Omega}_T(h) [\hat{\gamma} - g(\hat{\phi}, \overline{\phi}, h)]$$

- $\hat{\gamma}$  IRFs from STVAR + GIRF method
- $g(\hat{\phi},\overline{\phi},h)$  IRFs from the theoretical model
  - $\hat{\phi}$  estimated parameters,  $\overline{\phi}$  calibrated parameters
- $\hat{\Omega}_T(h)$  is the identity matrix of dimension 2
- Match impulse responses of C and I for horizon h

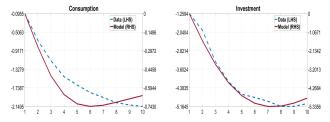
### Parameters I want to estimate

| Parameter                                   | Definition                                               |  |  |
|---------------------------------------------|----------------------------------------------------------|--|--|
| ν                                           | Elasticity of borrowing costs wrt                        |  |  |
|                                             | leverage                                                 |  |  |
| $\overline{\sigma^a} = \overline{\sigma^z}$ | Mean Volatility                                          |  |  |
| $ ho_{\sigma_a}$ , $ ho_{\sigma_z}$         | Persistence of demand and supply<br>specific uncertainty |  |  |
| h                                           | Strength of external habits                              |  |  |
| $\kappa_F$                                  | Degree of exchange rate pass-                            |  |  |
|                                             | through                                                  |  |  |
| $\psi$                                      | Inverse Frisch elasticity of labor                       |  |  |
|                                             | supply                                                   |  |  |


▲目▶ 目目 のなべ

## Estimated values of parameters...1

| Parameter                                                                   | Mexico  | United Kingdom |
|-----------------------------------------------------------------------------|---------|----------------|
| $\nu$ - Elasticity of borrowing costs wrt leverage                          | 0.07    | 0.0384         |
| $\sigma_{\overline{a}} = \sigma_{\overline{z}}$ - Average uncertainty       | 0.2484  | 0.2705         |
| $\rho_{\sigma_x}$ - Persistence of second-moment shock - preference         | 0.8624  | 0.8541         |
| $\rho_{\sigma_{\alpha}}$ - Persistence of second-moment shock -productivity | 0.9491  | 0.9088         |
| $\kappa_F$ - Degree of exchange rate pass through - extent of nom-          | 0.2481  | 0.4995         |
| inal rigidities in imports                                                  |         |                |
| h - Persistence of external habits                                          | 0.4704  | 0.5032         |
| $\psi$ - Frisch elasticity of labor supply                                  | 2.0124  | 3.0027         |
| Est. $R_{t+1}^K$                                                            | 1.07679 | 1.046          |


Expanded Sample

▲ヨ▶ ヨヨ のへで



Mexico

United Kingdom



X-Axis: Horizon, Y-Axis: Response in %

표 ▶ - 프!

= 9Q@

## Welfare Costs - What hurts more?

|             | Non-Stochastic Steady State |                             | Stochastic Steady State    |                                     |
|-------------|-----------------------------|-----------------------------|----------------------------|-------------------------------------|
| Variable    | k=2.5                       | k=2.5                       | k=2.5                      | k=2.5                               |
|             | $\nu = 0.04$                | $\nu = 0.07$                | & $\nu = 0.04$             | & $\nu = 0.07$                      |
|             | (a)                         | (b)                         | (c)                        | (d)                                 |
| GDP         | 5.21                        | 4.32                        | 3.62                       | 2.01                                |
|             |                             | $(\%\Delta_{b/a}=-17\%)$    | ( %∆ <sub>c/a</sub> =-31%) | $\%\Delta_{d/c}$ =-45%,             |
|             |                             | ,                           | ,                          | %∆ <sub>d/b</sub> =- <b>54%</b> )   |
| Investment  | 1.36                        | 0.93                        | 0.82                       | 0.18                                |
|             |                             | $(\% \Delta_{b/a} = -31\%)$ | ( %∆ <sub>c/a</sub> =-40%) | ( %∆ <sub>d/c</sub> =- <b>78%</b> , |
|             |                             | ,                           | ,                          | $\Delta_{d/b}$ =-81%)               |
| Consumption | 3.26                        | 3.08                        | 3.32                       | 2.52                                |
|             |                             | $(\%\Delta_{b/a}=-5\%)$     | ( %∆ <sub>c/a</sub> =2%)   | $(\%\Delta_{d/c}=-24\%)$            |
|             |                             |                             |                            | $\Delta_{d/b}$ =-18%)               |

Comparing stochastic and non-stochastic steady states Comparing stochastic steady states in EMs vs AEs

= 900

# **Big Picture**

- Motivated topic by examining empirical regularities of uncertainty shocks across countries using nonlinear model
- 2 Using interaction of fin. frictions and uncertainty shocks in SOE model  $+ 3^{rd}$  order solution to explain the empirical feature/excess volatility in emerging countries
- 3 Used sample of 8 countries to estimate parameters and demonstrate that borrowing costs are 64%-67% higher in emerging countries
- Welfare losses attributed to the interaction of uncertainty and fin. frictions leads to a 45% reduction in GDP in emerging countries

三日 のへの



- Explore Bayesian estimation procedures
- Decompose entrepreneurial debt into domestic and foreign components and analyze what happens when I deviate from the assumption of 100% of debt being denominated in foreign currency
- Provide micro-founded explanation towards why  $\nu^{Emerging} > \nu^{Advanced}$

三日 のへの

# Appendix

もうてい 正則 スポットポット (日本)

## Environment - Households

- Households:
  - Consume (C<sub>t</sub>), supply labor (L<sub>t</sub>), save in domestic (b<sub>t</sub>) and foreign assets (F<sup>\*</sup><sub>t</sub>)
  - 2 Consumption CES aggr. of domestic goods  $(C_{H,t})$  and imports  $(C_{F,t})$
  - **3** Exogenous shock to hh discount factor  $(z_t)$

$$E_0 \sum_{t=0}^{\infty} \beta^t z_t \left( \frac{(C_t - hC_{t-1})^{1-\rho}}{1-\rho} - \frac{L_t^{1+\psi}}{1+\psi} \right)$$

Subject to:

 $P_tC_t + P_t\Gamma_t + B_t + X_tF_t^* = P_{H,t}W_t^rL_t + \Pi_t + R_{t-1}B_{t-1} + R_{t-1}^*X_tF_{t-1}^*$ 

$$\Gamma_t = \frac{\phi_B}{2} \left(\frac{B_t}{P_t}\right)^2 + \frac{\phi_F^*}{2} \left(\frac{X_t F_t^*}{P_t}\right)^2$$

 $P_t=$ CPI,  $P_{H,t}=$ GDP deflator,  $X_t=$ Nominal Exchange Rate,  $R_t^*=$ Global risk free interest rate,  $\Pi_t=$  residual profits from firm ownership

Environment

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 ● の Q @

# Specification of Borrowing Costs for Entrepreneurs

• Model cost of credit as a function of a global and a country specific component - Neumeyer and Perri (2005)

#### $R_t^*\Psi(t)$

• Country specific component is an increasing function of leverage - Gertler, Gilchrist and Natalucci (2007)

$$\Psi(t) = {f k_t}^
u$$
 where  $k_t = {Q_t K_{t+1} \over N_t}$ 

• Country specific difference introduced by making borrowing costs more responsive to leverage for emerging countries

$$\nu^{Emerging} > \nu^{Advanced}$$

< ∃ ▶ ∃|= ∽Q@

#### Environment - Entrepreneurs

**1** Entrepreneur chooses capital  $K_{t+1}$  t for use in t+1 - using net worth  $(N_t)$  and foreign currency denominated debt  $D_t$ :

Maximize the ex ante value of capital by choosing:  $D_t$ 

$$\max_{D_t} V_t = E_t \left[ R_{t+1}^K Q_t K_{t+1} - R^* k_t^{\nu} \frac{X_t}{P_t} D_t \right]$$

subject to

$$Q_t K_{t+1} = N_t + \frac{X_t D_t}{P_t}$$

**2** Choose Labor  $(L_t)$  to max. profits from selling wholesale goods

$$\arg\max_{\{L_t\}} P_{W,t} a_t (K_t)^{\alpha} (L_t)^{1-\alpha} - W_t L_t$$

4 / 28

∃▶ ∃|= ∽२०

- Following BGG (1999) fraction  $\theta$  survive each period
- Net Worth  $N_t = \theta V_t + (1 \theta)E$
- Exiting entrepreneurs consume  $C_t^e = V_t E$



▲ 玉 ▶ 三 三 り へ ()

## Equilibrium conditions - Entrepreneurs

Marginal Financing Condition

$$E_t R_{t+1}^K = R_t^* (k_t)^{\nu} E_t \frac{q_{t+1}}{q_t}$$

- For a given value of leverage  $k_t$  a higher value of  $\nu$  will imply a lower equilibrium value of capital  $K_t$
- Foreign currency denominated debt depreciation of currency will increase leverage  $k_t$  by eroding value of capital  $(V_t)$

Environment

< ∃ ▶ ∃|= ∽Q@

#### **Capital Producers**

• Choose capital  $K_t$  st

$$\begin{split} \max_{\{I_t\}} E_t \sum_{t=0}^{\infty} \beta^t \frac{\lambda_{t+1}}{\lambda_t} \Big[ Q_t K_{t+1} - (1-\delta) Q_t K_t - I_t \Big] \\ \text{subject to } K_{t+1} &= (1-\delta) K_t + [1 - S(\frac{I_t}{I_{t-1}})] I_t \\ S &= S'(.) = 0 \end{split}$$

• Investment is a CES aggregate of domestic goods  $(I_{H,t})$  and imports  $(I_{F,t})$ 



ヨト ヨヨ のへの

#### Environment - Retailers

- Sticky prices imp. to generate co movement in C, I, Y in response to uncertainty shock
- Introduce nominal rigidities à la Calvo
  - Retailers Domestic goods  $\kappa_H$
  - Retailers Imported goods  $\kappa_F$
- Consequently,

$$P_{H,t}^{1-\epsilon} = \kappa_H P_{H,t-1}^{1-\epsilon} + (1-\kappa_H) \hat{P_{H,t}}^{1-\epsilon}$$
$$P_{F,t}^{1-\epsilon} = \kappa_F P_{F,t-1}^{1-\epsilon} + (1-\kappa_F) \hat{P_{F,t}}^{1-\epsilon}$$

•  $\kappa_F$  - dual role - stickiness in import prices + degree of exchange rate pass-through



▲ Ξ ► Ξ Ξ · • • • • • •

#### Central Bank + Market Clearing

- CPI  $(P_t)$  CES aggr. of GDP deflator  $(P_{H,t})$  and Import Price Index  $(P_{F,t})$
- Taylor Rule:

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{(1-\chi)} \left[ \left(\frac{Y_{H,t}}{Y_H}\right)^{\chi_y} \left(\frac{\pi_t}{\pi}\right)^{\chi_\pi} \right]^{\chi} \left(\frac{Y_{H,t}}{Y_{H,t-1}}\right)^{\chi_{\Delta_y}}$$

Market clearing

$$Y_{H,t} = \underbrace{\frac{P_t}{P_{H,t}}(C_t + I_t)}_{Domestic \ Demand} + \underbrace{C^*_{H,t} - \frac{P_{F,t}}{P_{H,t}}Y_{F,t}}_{Net \ Exports} + \underbrace{K_H + \frac{P_{F,t}}{P_{H,t}}K_F}_{Fixed \ Costs} + C^e_t$$

• Supply of domestic assets fixed:  $b_t = \overline{b}$ 

Environment

#### Calibration

#### Foreign Sector - Demand for exports

• Export Demand evolves as:

$$C_{H,t}^* = \left[\gamma_2 \left(\frac{P_{H,t}^*}{P_{F,t}^*}\right)^{-\eta} C_t^*\right]^{\rho_\star} C_{H,t}^*^{1-\rho_\star}$$

• Law of one price holds for exports:

$$P_{H,t}^* = \frac{P_{H,t}}{X_t}$$

 $\eta$ =Elasticity of substitution between exports and domestically produced goods for the foreign sector,  $\gamma_2$ =Share of goods produced at home in the consumption basket for the foreign sector,  $\rho^*$ =AR(1) coefficient on exports Assume that foreign sector CPI  $\approx P_{F,t}^*$ 

Environment

- ▲ 글 ▶ - 글

#### Estimating empirical IRFs in recessions

Use the Smooth Transition Vector Auto Regression Model - Auerbach and Gorodnichenko (2012) - Results from Chatterjee (2017)

$$Y_t = F(z_{t-1})B_R(L)Y_t + (1 - F(z_{t-1}))B_{NR}(L)Y_t + \epsilon_t$$
(1)

$$\epsilon_t \sim N(0, \Omega_t) \tag{2}$$

$$\Omega_t = F(z_{t-1})\Omega_R + (1 - F(z_{t-1}))\Omega_{NR}$$
(3)

$$F(z_t) = \frac{exp(-\gamma z_t)}{1 + exp(-\gamma z_t)} \text{ and } \gamma > 0$$
(4)

$$E(z_t) = 0 \text{ and } Var(z_t) = 1$$
(5)

▲ Ξ ► Ξ Ξ · · · ○ Q ()

Estimation

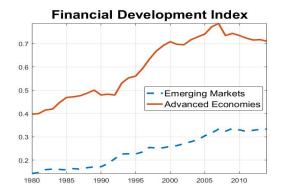
### Data Description

- Data
  - Countries chosen: U.K., U.S., France, Canada, Mexico, Chile, Argentina, and South Korea
  - ▶ Uncertainty (U<sub>t</sub>)
    - CBOE VIX for the U.S
    - Volatility of stock market returns for the U.K., France, Canada, Mexico, Chile, Argentina, and South Korea
  - Macroeconomic variables
    - Investment  $(I_t)$ , Consumption  $(C_t)$  log first differences taken
    - Trade Balances  $(TB_t)$  First difference of net exports expressed as a % of GDP
    - Inflation  $(\Pi_t)$  Calculated using the GDP deflator
    - Interest rate  $(r_t)$  Policy rate or closest available proxy is used
- Identification Cholesky
  - Model:  $[U_t, I_t, C_t, TB_t, \Pi_t, r_t]'$  or  $[U_t, I_t, C_t, TB_t]'$

Estimation

▲ 臣 ▶ 三十日 めのの

# Estimating parameters for representative EM and AE specification...2


| Parameter                                                             | Average - | Average - Advanced |
|-----------------------------------------------------------------------|-----------|--------------------|
|                                                                       | Emerging  | Economies          |
|                                                                       | Markets   |                    |
| u - Elasticity of borrowing costs wrt leverage                        | 0.1064    | 0.0621             |
| $\sigma_{\overline{a}} = \sigma_{\overline{z}}$ - Average uncertainty | 0.1163    | 0.1518             |
| $ ho_{\sigma_z}$ - Persistence of second-moment shock - preference    | 0.821     | 0.9225             |
| $\rho_{\sigma_a}$ - Persistence of second-moment shock -productivity  | 0.8201    | 0.9015             |
| h - Persistence of external habits                                    | 0.4508    | 0.5044             |
| $\kappa_F$ - Degree of exchange rate pass through - extent of nom-    | 0.2498    | 0.4998             |
| inal rigidities in imports                                            |           |                    |
| $\psi$ - Frisch elasticity of labor supply                            | 2.0001    | 3.0006             |
| Est. $R_{t+1}^K$                                                      | 1.1132    | 1.06903            |

AEs: U.K., U.S., France, Canada EMs: Mexico, Chile, Argentina, South Korea

Baseline

= nac

# Financial Development Index



Financial Development Index calculated using the access, depth and efficiency of financial institutions and markets for advanced and emerging countries. Source: International Monetary Fund.



-

= nac

#### Calibrating uncertainty shocks ..1

- Calibrate  $\overline{\sigma^a}, \overline{\sigma^z}$  by using empirical counterpart of model definition
- Use the volatility of stock market returns

| Country type              |          | Average volatility of quarterly stock market returns $(1993Q1 - 2014Q4)$ |
|---------------------------|----------|--------------------------------------------------------------------------|
| Representative<br>Country | Advanced | 0.0758 (U.K.)                                                            |
| Representative<br>Country | Emerging | 0.1128 (Mexico)                                                          |

Calibration - Key

<=> = |= √ < ∩

# Calibrating key parameters

- Calibrate  $\overline{\sigma^a}, \overline{\sigma^z}$  by using empirical counterpart of model definition
- Use the volatility of stock market returns

Details

ELE SOG

| Parameter                                   | Definition                | Calibrated Values |
|---------------------------------------------|---------------------------|-------------------|
| $\overline{\sigma^a} = \overline{\sigma^z}$ | Mean Volatility           | 0.112             |
| $\eta_C$                                    | Stochastic Volatility     | 0.00112           |
| $\rho_{\sigma}a$                            | Persistence: $\sigma_t^a$ | 0.83              |
| $\rho_{\sigma^z}$                           | Persistence: $\sigma_t^z$ | 0.85              |
| $ ho_a$                                     | Persistence: $a_t$        | 0.75              |
| $\rho_z$                                    | Persistence: $z_t$        | 0.85              |
| $\overline{a} = \overline{z}$               | Mean: Level               | 1                 |

A 1 std deviation shock to uncertainty  $\implies$  a 1% increase above steady state

## Calibration of elasticity of borrowing costs wrt leverage

| Model type                      | Leverage (k) | Elasticity of borrowing costs wrt leverage $(\nu)$ |
|---------------------------------|--------------|----------------------------------------------------|
| Representative Advanced Country | 2.5          | 0.04                                               |
| Representative Emerging Country | 2.5          | 0.07                                               |

- Calibration captures asymmetry in borrowing costs for a given level of leverage
- Parameters imply borrowing costs of 7.6% in EMs and 4.67% in AEs
- u reduced form representation of country specific characteristics egilies
- $R^* = 1.0099$
- Standard calibration for remaining behavioral parameters

Details

= nan

Calibration

#### Calibration of remaining parameters

Calibration

| Parameter                       | Definition                                                               | Calibrated Value                                      |
|---------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
|                                 | Households                                                               |                                                       |
| $\frac{1}{\rho/(1-h)}$          | Intertemporal Elasticity of substitution (after adjusting for<br>habits) | 0.25                                                  |
| h                               | Habit                                                                    | 0.5                                                   |
| $\psi$                          | Frisch elasticity of labor supply                                        | 2                                                     |
| $\eta_1$                        | Elasticity of substitution between                                       | 0.89                                                  |
|                                 | home and foreign goods for consumption                                   | Gertler, Gilchrist and Natalucci (2007)               |
| $\phi_B, \phi_F^*$              | Portfolio Holding Costs                                                  | 0.00009, 0.0009                                       |
| $\phi_B$ , $\phi_F$<br>$_\beta$ | Discount Factor                                                          | 0.997                                                 |
| $\gamma_1$                      | Share of home goods in aggregate consumption                             | 0.55                                                  |
| -                               | Foreign Sector                                                           |                                                       |
| η                               | Elasticity of substitution between                                       | 1                                                     |
|                                 | home and foreign goods for foreign country                               | Gertler, Gilchrist and Natalucci (2007)               |
| $\gamma_2$                      | Share of goods produced at home -exports for rest of the world           | 0.0187                                                |
| $C^*$                           | Aggregate consumption for rest of the world                              | 200                                                   |
| $P_{E}^{*}$                     | CPI for Rest of the world                                                | 1                                                     |
| $C^*$ $P_F^*$ $R^*$ $($         | Gross foreign Interest Rate (quarterly)                                  | 1.0099 (1.04% Annualized after quarterly compounding) |
| $1 - \rho'$                     | Persistence of export demand from rest of the world                      | 0.75                                                  |
|                                 | Entrepreneurs                                                            |                                                       |
| α                               | Share of capital in production process                                   | 0.5, Gertler, Gilchrist and Natalucci (2007)          |
| θ                               | Exit rate of entrepreneurs                                               | 0.915, Fernandez and Gulan (2015) estimate 0.9        |

< 三→

三日 のへの

## Calibration of remaining parameters

Calibration

| Parameter         | Definition                                             | Calibrated Value                             |
|-------------------|--------------------------------------------------------|----------------------------------------------|
|                   | Capital Produce                                        | rs                                           |
| $\eta_2$          | Elasticity of substitution between                     | 0.89                                         |
|                   | home and foreign goods for investment                  |                                              |
| δ                 | Depreciation rate                                      | 0.05                                         |
| s''               | Elasticity of investment adjustment costs              | 6 Smets and Wouters (2007) use 5.74          |
|                   | Retailers                                              |                                              |
| ε                 | Elasticity of substitution across varieties            | 8                                            |
|                   | for domestically produced goods                        |                                              |
| ε <sub>1</sub>    | Elasticity of substitution across varieties            | 8                                            |
| -                 | for foreign goods                                      |                                              |
| ĸн                | Calvo price stickiness for retailers of domestic goods | 0.75 Gertler, Gilchrist and Natalucci (2007) |
| κF                | Calvo price stickiness for retailers of imported goods | 0.25                                         |
|                   | Monetary Policy: Taylor Rul                            | e Coefficients                               |
| $\chi_y$          | Output deviation from steady state                     | 0.08 - Smets and Wouters (2007)              |
| $\chi_{\Delta y}$ | Output growth                                          | 0.22 Smets and Wouters (2007)                |
| $\chi_{\pi}^{-g}$ | CPI inflation                                          | 1.5                                          |

= 200

#### Households...1

Households consume  $(C_t)$ , supply labor  $(L_t)$  and save in domestic  $(B_t)$  and foreign assets  $(F_t^*)$  so as to maximize:

$$E_0 \sum_{t=0}^{\infty} \beta^t z_t \left( \frac{(C_t - hC_{t-1})^{1-\rho}}{1-\rho} - \frac{L_t^{1+\psi}}{1+\psi} \right)$$

Subject to:

Budget constraint:

 $P_tC_t + P_t\Gamma_t + B_t + X_tF_t^* = P_{H,t}W_t^rL_t + \Pi_t + R_{t-1}B_{t-1} + R_{t-1}^*X_tF_{t-1}^*$ 

Portfolio holding costs

$$\Gamma_t = \frac{\phi_B}{2} \left(\frac{B_t}{P_t}\right)^2 + \frac{\phi_F^*}{2} \left(\frac{X_t F_t^*}{P_t}\right)^2$$

 $P_t=$ CPI,  $P_{H,t}=$ GDP deflator,  $X_t=$ Nominal Exchange Rate,  $R_t^*=$ Global risk free interest rate,  $\Pi_t=$  residual profits from firm ownership

Households Equilibrium

▲ Ξ ► Ξ Ξ · • • • • • •

Final consumption  $\left(C_{t}\right)$  is a CES aggregator over domestic goods and imported goods

$$C_t = \left[ (1 - \gamma_1)^{\frac{1}{\eta_1}} C_{H,t}^{\frac{\eta_1 - 1}{\eta_1}} + \gamma_1^{\frac{1}{\eta}} C_{F,t}^{\frac{\eta_1 - 1}{\eta_1}} \right]^{\frac{\eta_1}{\eta_1 - 1}} \text{ such that}$$

$$C_{H,t} = \left[\int_0^1 C_{H,t}(i)^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}, C_{F,t} = \left[\int_0^1 C_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}} dj\right]^{\frac{\epsilon}{\epsilon-1}}$$

 $\gamma_1$ =Share of Imports in consumption,  $\eta_1$ =Elasticity of substitution bw home goods and imports,  $\epsilon$ =Elasticity of substitution across varieties

Households Equilibrium

▲ Ξ ► Ξ Ξ · · · ○ Q ()

#### Entrepreneurial Choices ...1

Entrepreneur (indexed by net-worth N) chooses capital for use in t + 1:  $K_{t+1}^N$  and foreign currency denominated debt  $D_t^N$  to finance  $K_{t+1}^N$ :

• Maximize the ex ante value of capital by choosing:  $D_t$ 

$$\max_{D_{t}} V_{t}^{N} = E_{t} \left[ R_{t+1}^{K} Q_{t} K_{t+1}^{N} - R^{*} k_{t}^{\nu} \frac{X_{t}}{P_{t}} D_{t}^{N} \right]$$

subject to

$$\begin{split} Q_t K_{t+1}^N &= N_t^N + \frac{X_t D_t^N}{P_t} \\ \text{where } k_t^N &= \frac{Q_t K_{t+1}^N}{N_t^N} \end{split}$$

• FOC implies:

$$E_t R_{t+1}^K = R^* k_t \frac{q_{t+1}}{q_t} \text{ where } q_t = \frac{X_t}{P_t}$$
$$k_t^N = k_t \ \forall N$$

Entrepreneurs Equilibrium

22 / 28

< ∃ ▶ ∃|= ∽Q@

#### Entrepreneurial Choices ...2

• Produce wholesale goods using capital they own from previous period and labor hired from households:

$$Y_{H,t}^N = A_t K_t^{N^\alpha} L_t^{N^{1-\alpha}}$$

• Equilibrium choice of labor implies:

$$\begin{split} A_t \frac{P_{W,t}}{P_{H,t}} (1-\alpha) \Big( \frac{K_t^N}{L_t^N} \Big)^\alpha &= W_t^\gamma \\ \frac{K_t^N}{L_t^N} &= \frac{K_t}{L_t} \; \forall N \end{split}$$

<=> = |= √ < ∩

#### Entrepreneurial Choices ...3

Ex post value of capital

$$V_{t} = \left[ R_{t}^{K} Q_{t-1} K_{t} - R^{*} (k_{t-1})^{\nu} \frac{X_{t}}{P_{t}} D_{t-1} \right]_{=q_{t}}$$

• Expost rate of return on capital is given by:

$$R_{t}^{K} = \frac{mpk_{t}\frac{P_{H,t}}{P_{t}} + (1-\delta)Q_{t}}{Q_{t-1}}, mpk_{t} = \alpha \frac{P_{W,t}}{P_{H,t}}A_{t} \left(\frac{K_{t}}{L_{t}}\right)^{\alpha-1}$$

- Net-worth evolves as:
  - $N_t = \theta V_t + (1 \theta)E$ , E is exogenous  $\theta$  exit rate of entrepreneurs

= 990

#### Retailers of domestic goods

- Buy wholesale goods from entrepreneurs costlessly differentiate them and resell to households, capital producers and rest of the world as CES aggregate
- Demand faced by retailer j -

$$Y_{H,t} = \left[\int_0^1 Y_{H,t}(j)^{\frac{\epsilon-1}{\epsilon}} dj\right]^{\frac{\epsilon}{\epsilon-1}} - K_H$$

• Optimal reset price:

$$\hat{P_{H,t}} = \frac{\epsilon}{\epsilon - 1} \frac{E_t \sum_{s=0}^{\infty} (\beta \kappa_H)^s \frac{\Lambda_{t+s}}{\Lambda_t} \prod_{H,t}^{\epsilon} \frac{P_{W,t+s}}{P_{H,t+s}} Y_{H,t+s}}{E_t \sum_{s=0}^{\infty} (\beta \kappa_H)^s \frac{\Lambda_{t+s}}{\Lambda_t} \prod_{H,t}^{1-\epsilon} Y_{H,t+s}}$$

• GDP deflator evolves as

$$P_{H,t}^{1-\epsilon} = \kappa_H P_{H,t-1}^{1-\epsilon} + (1-\kappa_H) \hat{P_{H,t}}^{1-\epsilon}$$

< ∃ ▶ ∃|= ∽Q@

#### Calibration

#### Retailers of imported goods - Monacelli 2005

- Buy wholesale goods from entrepreneurs costlessly differentiate them and resell to households, capital producers and rest of the world as CES aggregate
- Demand faced by retailer j -

$$Y_{F,t} = \left[\int_0^1 Y_{F,t}(j)^{\frac{\epsilon-1}{\epsilon}} dj\right]^{\frac{\epsilon}{\epsilon-1}} - K_F$$

Optimal reset price:

$$\hat{P_{F,t}} = \frac{\epsilon}{\epsilon - 1} \frac{E_t \sum_{s=0}^{\infty} (\beta \kappa_F)^s \frac{\Lambda_{t+s}}{\Lambda_t} \prod_{F,t}^{\epsilon} \frac{X_t P_{F,t+s}^*}{P_{F,t+s}} Y_{F,t+s}}{E_t \sum_{s=0}^{\infty} (\beta \kappa_H)^s \frac{\Lambda_{t+s}}{\Lambda_t} \prod_{F,t}^{1-\epsilon} Y_{F,t+s}}$$

Import price index evolves as

$$P_{F,t}^{1-\epsilon} = \kappa_F P_{F,t-1}^{1-\epsilon} + (1-\kappa_F) P_{F,t}^{1-\epsilon}$$

Retailers Equilibriun

▲ 臣 ▶ 三十日 めのの

#### Uncertainty Shocks

Shock to hh intertemporal discount factor  $(z_t)$  and aggr. productivity in production func. of wholesale goods for entrepreneurs  $(a_t)$ 

$$a_t = (1 - \rho_a)\overline{A} + \rho_a a_{t-1} + \sigma_t^a \boldsymbol{u_t^a}$$

$$z_t = (1 - \rho_z)\overline{z} + \rho_z z_{t-1} + \sigma_t^z \boldsymbol{u_t^z}$$

$$\boldsymbol{\sigma_t^a} = (1 - \rho_{\sigma}^a)\overline{\sigma^a} + \rho_{\sigma}^a \sigma_{t-1}^a + \eta_C \underbrace{\boldsymbol{u_t^C}}_{Common}$$
$$\boldsymbol{\sigma_t^z} = (1 - \rho_{\sigma}^z)\overline{\sigma^z} + \rho_{\sigma}^z \sigma_{t-1}^z + \eta_C \underbrace{\boldsymbol{u_t^C}}_{Common}$$

• 
$$u_t^C \stackrel{\text{iid}}{\sim} (0, 1)$$
  
•  $\overline{\sigma^a}, \overline{\sigma^z}$  - average level of uncertainty,  $\eta_C$  - extent of stochastic volatility  
Environment

1= 9QC

#### **Uncertainty Shocks**

Shock to hh intertemporal discount factor  $(z_t)$  and aggr. productivity in production func. of wholesale goods for entrepreneurs  $(a_t)$ 

$$a_t = (1 - \rho_a)\overline{A} + \rho_a a_{t-1} + \boldsymbol{\sigma_t^a} u_t^a$$

$$z_t = (1 - \rho_z)\overline{z} + \rho_z z_{t-1} + \boldsymbol{\sigma_t^z} u_t^z$$

$$\begin{split} \boldsymbol{\sigma_t^a} &= (1 - \rho_{\sigma}^a) \overline{\sigma^a} + \rho_{\sigma}^a \sigma_{t-1}^a + \eta_C \underbrace{\boldsymbol{u_t^C}}_{Common} \\ \boldsymbol{\sigma_t^z} &= (1 - \rho_{\sigma}^z) \overline{\sigma^z} + \rho_{\sigma}^z \sigma_{t-1}^z + \eta_C \underbrace{\boldsymbol{u_t^C}}_{Common} \end{split}$$

• 
$$u_t^C \stackrel{\text{iid}}{\sim} (0, 1)$$
  
•  $\overline{\sigma^a}, \overline{\sigma^z}$  - average level of uncertainty,  $\eta_C$  - extent of stochastic volatility  
Environment

1= 9QC

#### Parameter bounds in Estimation

-

• Restrict the bounds on the average level of uncertainty ( $\overline{\sigma^a} = \overline{\sigma^z}$ ) to empirical limits

| Model type     | Minimum | Average | Maximum |
|----------------|---------|---------|---------|
| Mexico         | 0.0424  | 0.1128  | 0.2885  |
| United Kingdom | 0.0362  | 0.07582 | 0.2778  |

 Restrict the bounds on the gross rate of return on capital by using data on 3 month treasury bill yield

| Model type     | Minimum<br>(%) | Average (%) | Maximum<br>(%) |
|----------------|----------------|-------------|----------------|
| Mexico         | 2.883          | 10.259      | 41.760         |
| United Kingdom | 2.454          | 5.220       | 7.530          |

• These restrictions + leverage= $2.5 + R^* = 1.0099$  imply the following limits on  $\nu$ 

| Model type     | Minimum | Average | Maximum |
|----------------|---------|---------|---------|
| Mexico         | 0.020   | 0.096   | 0.370   |
| United Kingdom | 0.016   | 0.045   | 0.068   |

∃ ► ★ ∃ ► ∃ = √Q ∩