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Abstract

I study the role of sentiments in the transmission of monetary policy to economic ac-

tivity. First, I present a simple theoretical model of diagnostic expectations that motivates

my empirical analysis. In the theoretical model, I show that belief distortion interacts

with monetary policy shocks to generate a sentiment channel of transmission in addition

to the usually studied direct effects of monetary policy. Empirically, I test the existence

and strength of this interaction effect between sentiments and high-frequency monetary

policy surprises and document it is quantitatively important and operates over and above

the usual channels examined in earlier studies. My results show that time variation in

the sentiment channel can explain why the potency of monetary policy in influencing real

activity varies over time.
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1 Introduction

Understanding the effects of monetary policy on the economy is a central theme

of research in macroeconomics. Generally, there is consensus regarding the qualitative

features of how monetary policy impacts economic activity (see, for instance, Christiano,

Eichenbaum, and Evans (2005)); however, there is debate about whether and how the

effectiveness of monetary policy varies over the business cycle. In this paper, I propose

and examine the sentiment channel of monetary policy transmission to explain why the

potency of monetary policy in stimulating (or restraining) economic activity varies over

the business cycle.

The usual approach to quantifying the impact of monetary policy on the economy

measures the percent change in economic activity (for e.g.industrial production) due to

an exogenous change in the monetary policy. The sentiment channel I analyze in this

paper stems from an interaction between the underlying optimism or pessimism in the

economy and the exogenous change in monetary policy. I show that the sentiment channel

co-exists with the first channel, and to differentiate between the two, I label the former

as the direct effect of monetary policy and the latter as the sentiment channel or the

interaction effect underlying monetary policy.

I first motivate the empirical specification used for estimating the different channels

of monetary policy transmission by presenting a simple model of sentiments with risky

debt, diagnostic agents, and monetary policy, building on the environment in Bordalo,

Gennaioli, and Shleifer (2018).1 Unlike rational agents who respond optimally to shocks

in forming expectations, diagnostic agents overreact to current news or shocks and ex-
1In a standard model with rational expectations, sentiments do not have any first-order effects. To

allow sentiments to be of first-order importance is therefore challenging while retaining the assumption of
rational expectations. There are alternative approaches to model a departure from rational expectations,
such as learning. In the standard behavioral model, where agents are not rational and learn about
the laws of motion guiding the evolution of macro variables over time, changes in sentiment stem from
exogenous shocks to the perceived laws of motion. However, a framework with diagnostic beliefs is elegant
as sentiments in the model change endogenously in response to structural shocks in this environment.
Additionally, studies such as Bordalo, Gennaioli, and Shleifer (2018), Bordalo, Gennaioli, Shleifer, and
Terry (2022), Maxted (2023), and L’Huillier, Singh, and Yoo (Forthcoming), demonstrate in different
environments, that diagnosticity is an empirically consistent feature.
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trapolate these into future forecasts. Diagnosticity thus manifests as an overreaction,

generating optimism or pessimism in the model. Time-varying sentiments in this envi-

ronment thus stem from the assumption of diagnostic expectations.

In addition to diagnostic beliefs, the model features a continuum of firms that differ

in riskiness. In period t, firms varying in riskiness borrow from risk-neutral financial

intermediaries. A firm can either successfully repay debt (and produce) in period t + 1

or default. Successful debt repayment (and production) in period t + 1 is linked to the

realized state in period t+1, unknown in t, and the underlying riskiness of the firm, which

is known to financial intermediaries at t. In equilibrium, borrowing costs faced by risky

firms in period t depend on expectations about future states; this forges a direct link

between sentiments, borrowing costs, and real activity in the model. The average credit

spread relative to the risk-free rate in the model is a function of the riskiness of borrowers,

aggregate uncertainty in the economy, beliefs, and monetary policy. Moreover, it can be

decomposed into a rational component and a component that is exclusively attributed to

sentiments stemming from diagnosticity in belief formation.2

When agents are diagnostic, I show that the sentiment-driven component of the credit

spread interacts with monetary policy shocks to generate an additional channel of mon-

etary policy transmission that operates alongside the direct effect of monetary policy

transmission. Investment by risky firms – a function of the credit spread – inherits this

feature and likewise has a component that depends o the direct effects and a component

driven purely by the overreaction stemming from the sentiment channel. The law of

motion for investment generates testable implications, which I then take to the data.

In Section 3, I describe the empirical setup to examine the testable predictions implied

by the theoretical framework. The main challenge in testing the existence and strength of
2The impact of diagnosticity-driven overreaction in response to monetary policy shocks can also

be theoretically examined in the canonical New Keynesian model. However, taking the canonical New
Keynesian model to data is challenging. The theoretical implications for credit spread in the model allow
me to empirically measure diagnosticity in the data at a monthly level, which is critical to estimating
local projections in quantifying the relative strengths of the direct effects and the sentiment-driven
interaction effects. To illustrate the similarities in the theoretical predictions, I present the solution of
the three-equation New Keynesian model with diagnostic expectations in Section E of the appendix.
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the sentiment channel lies in obtaining an appropriate empirical measure of diagnosticity.

In the theoretical model, the role of diagnosticity can be easily isolated; in the data,

diagnosticity underlying belief formation is not directly observable. However, the extent

of diagnosticity in the data can be inferred indirectly using the results from the theoretical

model.

The theoretical model predicts that the average credit spread can be decomposed

into two parts in the presence of diagnosticity. The first part captures the compensation

demanded by a rational investor for bearing risk due to expected default and uncertainty

in the economy. The second part captures the impact of sentiments on borrowing costs

via the extent of diagnosticity. Furthermore, this second component (as per the theory)

should be zero if the extent of diagnosticity is zero. Therefore, if it is possible to decom-

pose the credit spread in the data into components that correspond to compensation for

observable measures of risk (such as default risk, duration risk, and uncertainty in the

economy) and compensation over and above these observable factors, then the latter can

be interpreted to quantify compensation over and above what is demanded by a rational

investor and driven by sentiments.

I use this intuition in the empirical analysis to quantify diagnosticity and measure it

using a lagged value of the excess bond premium (EBP) from Gilchrist and Zakrajsek

(2012). Gilchrist and Zakrajsek (2012) construct the EBP by purging their measure of

credit spread for nonfinancial firms (Gilchrist-Zakrajsek spread)3 of not only the risk due

to expected default but any additional risks correlated with expected default as well,

along with bond and firm-specific characteristics that can potentially influence yields via

other channels. Given this approach, the empirical measure of EBP directly corresponds

to the model-implied definition of the excess bond premium. It can be interpreted to

capture the additional compensation for bearing risk over and above what a rational

investor demands. Finally, the lagged value of the EBP as a stand-in for diagnosticity
3The Gilchrist-Zakrajsek credit spread is constructed by subtracting firm-specific yields from a syn-

thetic risk-free security that mimics exactly the cash flows of the corresponding corporate debt instru-
ment.
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also allows diagnosticity to exhibit potential time-variation over the business cycle in the

empirical analysis.4

I measure monetary policy shocks in the empirical analysis using high-frequency

changes in asset prices around a tight thirty-minute window bracketing FOMC announce-

ments (along the lines of Gurkaynak, Sack, and Swanson (2005), Gertler and Karadi

(2015), Nakamura and Steinsson (2018), Miranda-Agrippino and Ricco (2021), Swan-

son (2021) and Bauer and Swanson (2023)). In order to capture some of the effects of

forward guidance as well as changes in the federal funds rate, I follow Nakamura and

Steinsson (2018) and construct the monetary policy surprise measure as the first prin-

cipal component of federal funds futures and Eurodollar futures out to a horizon of one

year. This effectively summarizes the conduct of monetary policy throughout the sample

that extends from July 1991 to June 2019.

To empirically test the existence and strength of the sentiment channel, Section 4

estimates local projections (Jordà (2005)) allowing for an interaction effect between sen-

timents and monetary policy surprises as well as the standard direct effect of monetary

policy surprises. Estimating the coefficients of the latter over time is the usual approach

to quantifying the effects of monetary policy on the economy. Examining the coefficients

on the interaction term between sentiments and monetary policy surprises allows me to

evaluate the existence and strength of this proposed interaction effect.

I find that the interaction effect – quantifying the strength of the sentiment channel

– is not only significant and operational but quantitatively as relevant as the direct

channel of monetary policy transmission usually examined in existing studies. Moreover,

I show that the sentiment channel is independent of interactions between monetary policy

surprises and measures capturing the real health of the economy. The sentiment channel

thus operates over and above these features and does not stand in for cyclical fluctuations

in real activity. Finally, the empirically estimated sentiment channel is robust to features
4This article is not the first to interpret the EBP as a measure of sentiment. Lopez-Salido, Stein, and

Zakrajsek (2017) also use the EBP to measure credit-market sentiment to more generally examine the
relation between time-varying credit market sentiment and real activity.
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such as the 2008 financial crisis and the zero lower bound.

The results suggest the monetary policy more effectively stimulates real activity when

sentiments are pessimistic. Additionally, when sentiments are optimistic, the central

bank needs to tighten more to restrain an overheating economy. Therefore, an important

takeaway from the results is that the direct effects of monetary policy can be amplified

or diluted by the state of sentiments in the economy and explains why the effectiveness

of monetary policy varies over the business cycle.

Related Literature This article is broadly related to four strands of literature. The

first strand examines the real effects of monetary policy shocks, e.g., Christiano, Eichen-

baum, and Evans (1999), Gertler and Karadi (2015), Jarociński and Karadi (2020), Naka-

mura and Steinsson (2018), Miranda-Agrippino and Ricco (2021), and Bauer and Swanson

(2023). These articles quantify the usual “direct” effects of monetary policy surprises.

I show that the sentiment channel operates over and above these direct effects and is

quantitatively relevant and robust; additionally, in comparison to other studies (such as

Gertler and Karadi (2015) and Jarociński and Karadi (2020)), I estimate direct effects

that are bigger in magnitude.

The theoretical framework closely follows Bordalo, Gennaioli, and Shleifer (2018).

Bordalo et al. (2018) provide the basis for diagnostic expectations arising from the repre-

sentativeness heuristic introduced in Tversky and Kahneman (1983). Following Bordalo

et al. (2018) and Bordalo et al. (2019), diagnostic expectations are increasingly gaining

traction in the literature with studies such as Bordalo, Gennaioli, Shleifer, and Terry

(2022), Maxted (2023), and L’Huillier, Singh, and Yoo (Forthcoming). These studies,

however, do not focus on the sentiment channel underlying monetary policy transmission.

The model in Section 2 provides the basis for my empirical analysis and demonstrates

the impact of diagnosticity in the conduct of monetary policy.

In the present paper, I use the EBP to indirectly quantify the role of diagnosticity

in the data. Since diagnosticity drives optimism or pessimism in the model, it can also
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be interpreted as a stand-in for the prevailing sentiment in the economy. This article,

however, is not the first to interpret the EBP as a measure of sentiment. Lopez-Salido,

Stein, and Zakrajsek (2017) also use the EBP to measure credit-market sentiment to

more generally examine the relation between time-varying credit market sentiment and

real activity.

Finally, the article is also related to studies that examine the role of financial con-

ditions in assessing the real effects of monetary policy surprises. Earlier studies have

examined the impact of time-varying financial frictions on the transmission of monetary

policy shocks (e.g.: see Gertler and Karadi (2015) and Ottonello and Winberry (2020)

among others). In this article, I show that time-varying sentiments, independent of time-

varying financial frictions in credit markets, interact with monetary policy surprises to

generate an additional channel for the propagation of monetary policy in the economy.

2 A Model of Sentiments with Monetary Policy

A simple model of sentiments helps motivate why we might expect the sentiment

channel to amplify (or dampen) the effects of changes in monetary policy. I build off

the basic model in Bordalo, Gennaioli, and Shleifer (2018), examining the impact of

sentiments in a model featuring diagnostic expectations. The model features risky firms,

risk-neutral financial intermediaries and the central bank conducting monetary policy.

2.1 Firms

There exists a continuum of firms of measure one. Each firm is indexed by ρ, capturing

the underlying riskiness with ρ ∈ R. A higher value of ρ implies a firm less likely to be

productive in any given state ωt since firm output for a given value of capital k evolves

as

y(k|ρ, ωt) =


kα ωt ≥ ρ

0 ωt < ρ.
(1)
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Here, α ∈ (0, 1). A firm indexed by riskiness ρ is productive as long as it is sufficiently

safe with ρ < ωt. Note that as ρ → −∞, the firm will always choose to produce since

ρ→ −∞ corresponds to the safest firms. For two firms with different levels of riskiness,

say ρ1 and ρ2, but same level of capital, as long as ρ1 < ωt and ρ2 < ωt, both firms will

produce and they will produce the same level of output. Riskiness ρ across the spectrum

of firms is common knowledge and distributed across firms according to f(ρ).

Capital installed in t becomes effective for production in t + 1. Additionally, capital

depreciates fully at the end of each period. Thus, capital in period t+ 1 and investment

in period t can be used interchangeably in this model. To finance capital in period t+ 1,

firms raise debt from risk-neutral financial intermediaries in period t. A firm of riskiness

ρ successfully produces and repays debt in t+ 1 if ωt+1 ≥ ρ, otherwise the firm does not

produce and defaults on its debt obligations. There is no record keeping in the model;

therefore, if a firm of riskiness ρ defaults, it remains in the economy and can produce and

borrow in subsequent periods.

2.2 Financial Intermediaries

To keep the framework analytically tractable and intuitive, I assume that firms in

the model borrow from a perfectly competitive risk-neutral financial intermediary. The

financial intermediary can be thought of as pooling the savings in the economy. Risk-

neutral financial intermediaries face the option of investing in a one-period risk-free asset

with a gross return of Rt or investing in debt issued by risky firms. The interest rate

Rt on the risk-free asset is also the central bank’s instrument for conducting monetary

policy in this environment.

For a firm of riskiness ρ, productivity and successful debt repayment in t + 1 is tied

to the state of the economy and the underlying riskiness of the firm ρ. Borrowing costs

for funding capital in t + 1 by a firm indexed by riskiness ρ therefore depends on the

perceived probability with which the firm will repay its debt. Let µ
(
ρ, E(t)

)
denote the

probability of successful debt repayment in t + 1 (hence production by a firm indexed
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by riskiness ρ). E(t) here governs how expectations are formed about the future state

ωt+1 given the current state ωt by financial intermediaries in this environment. Given

the assumption of risk neutrality, the financial intermediary will require a return rt+1(ρ)

from a firm of riskiness ρ such that

rt+1(ρ)µ
(
ρ, E(t)

)
= Rt ∀ρ. (2)

This implies ∫ ∞
−∞

rt+1(ρ)µ
(
ρ, E(t)

)
f(ρ)dρ = Rt. (3)

2.3 Evolution of expectations

The evolution of E(t) is critical to determining the credit spread faced by risky firms

along with investment and output in this environment. When agents are rational, E(t) =

Et(ωt+1) and when agents are diagnostic E(t) = Et
θ(ωt+1). If agents are rational, then

belief about the future state of the economy ωt+1 evolves according to the true Markovian

distribution, that is

ωt+1|ωt ∼ f(ωt+1|ωt).

Suppose, fundamentals ωt evolve as an AR(1) process with iid Gaussian errors

ωt = (1− bω)ω + bωωt−1 + εωt ; with εωt
iid∼ N(0, σ2

ω), (4)

then, ωt+1|ωt ∼ N(Etωt+1, σ
2
ω), with Etωt+1 = (1− bω)ω + bωωt. The ex ante probability

of successful debt repayment µ
(
ρ, Etωt+1

)
with rational expectations is

µ
(
ρ, Et(ωt+1)

)
= P(ωt+1 ≥ ρ|ωt) = 1

σω
√

(2π)

∫ ∞
ρ

exp−

(
x− Et(ωt+1)

)2

2σ2
ω

dx

Now let us examine what happens if agents are not rational and beliefs are distorted

relative to the rational benchmark. The key motivating assumption underlying diagnostic
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beliefs is – “an attribute is representative of a class if it is very diagnostic; that is, the

relative frequency of this attribute is much higher in that class than in the relevant

reference class” (see page 296 Tversky and Kahneman (1983)). Bordalo et al. (2018)

implement belief distortion via this representativeness heuristic as “diagnostic belief”

formation whereby agents overweight the realization of a random variable in period t in

forming future forecasts of the same variable. Thus, when agents are diagnostic, belief

about the future state of the economy ωt+1 evolve according to a distorted distribution

given by

ωt+1|ωt ∼ f θ(ωt+1|ωt) = f(ωt+1|ωt)
[
f(ωt+1|ωt)
f(ωt+1|ωt−1)

]θ 1
Z

(5)

Here, θ > 0 captures the extent of diagnosticity in beliefs and Z is a normalizing constant

ensuring that f θ(ωt+1|ωt) integrates to 1. The impact of diagnostic beliefs can be seen

from equation (5). Equation (5) suggests that when θ > 0, agents overweight news in

period t (εt 6= 0) relative to the “no news” baseline (εt = 0): that is, agents overweight

the importance of news about the current state ωt when forming forecasts about future

states. The term in the square brackets exactly captures this feature. If θ = 0, as seen

from equation (5), the model reverts to one with rational agents. Bordalo et al. (2018)

further show that if fundamentals evolve as an AR(1) process with Gaussian errors, such

as in, equation (4), then f θ(ωt+1|ωt) is also Gaussian but with a distorted mean reflecting

diagnosticity in belief formation.5 Therefore,

f(ωt+1|ωt) ∼ N(Etωt+1, σ
2
ω) and f θ(ωt+1|ωt) ∼ N(Eθ

t ωt+1, σ
2
ω)

with

Eθ
t ωt+1 = Etωt+1 + θ(Etωt+1 − Et−1ωt+1). (6)

The first term on the right-hand side of equation (6) is simply the forecast made by a

rational agent. The second term on the right-hand side captures the extent of belief
5Proof can be found in Section A of the appendix.

10



distortion due to overweighting of current news.
[
Etωt+1−Et−1ωt+1

]
captures the differ-

ential between forecasts about ωt+1 between a scenario with news εωt 6= 0 and a scenario

with no news, i.e. εωt = 0. The source of overreaction in a model with diagnostic beliefs

stems from the extent agents overweight current news relative to a rational agent. Since

a rational agent optimally updates beliefs about the state of the economy, the extent of

belief distortion via θ thus generates optimism or pessimism in the economy. This way,

the parameter θ and sentiments in the model can be used interchangeably.

While in this example, ωt is a univariate AR(1) process, the result in equation (6) can

also be applied to cases where the underlying state is a linear combination of nondegen-

erate normal random variables. That is, if ωt = zt+yt where both zt and yt follow AR(1)

processes with nondegenerate Gaussian distributions, then it is straightforward to show

that

Eθ
t ωt+1 = Eθ

t

[
zt+1 + yt+1

]
= Eθ

t zt+1 + Eθ
t yt+1 =

Etzt+1 + θ(Etzt+1 − Et−1zt+1) + Etyt+1 + θ(Etyt+1 − Et−1yt+1). (7)

2.4 Diagnostic expectations and borrowing costs

How does diagnosticity in belief formation (θ >0) impact the perceived probability of

default by a firm of given riskiness ρ? When agents are diagnostic and θ > 0, the ex ante

probability of successful debt repayment and production in t+ 1 is

µ
(
ρ, Eθ

t (ωt+1)
)

= Pθ(ωt+1 ≥ ρ|ωt) = 1
σω
√

(2π)

∫ ∞
ρ

exp−

(
x− Eθ

t (ωt+1)
)2

2σ2
ω

dx (8)

with equation (6) describing the expression for Eθ
t (ωt+1). Thus as θ increases, the influ-

ence of current news on future forecasts increases; hence the role of sentiments increases

as well. If agents observe positive news via εωt > 0, they will overweight this observation,

and ceteris paribus, the perceived probability of debt repayment in t + 1 will increase.
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Likewise, when agents observe negative news via εωt < 0, they will overweight this ob-

servation, and ceteris paribus, the perceived probability of debt repayment in t + 1 will

decrease.

Given this structure underlying the perceived probability of debt repayment, note that

a perfectly safe firm with ρ → −∞ will never default since lim
ρ→−∞

µ
(
ρ, Et

θ(ωt+1)
)

= 1.

Additionally, in this setup there are no agency problems in the spirit of Bernanke et al.

(1999), and there is no distinction between debt and equity financing. Both contracts are

therefore contingent on the same outcome and promise the same rate of return. Following

Bordalo et al. (2018) I assume that all capital is financed by debt.

2.5 Optimal capital choice and credit spreads

Given that risk-neutral financial intermediaries operate in a perfectly competitive

environment, they are willing to lend to a firm of riskiness ρ as long as they are indifferent

between lending to risky firms vis-à-vis investing in the risk-free asset. With diagnostic

expectations, the incentive compatibility condition that achieves this is6

rt+1(ρ)µ
(
ρ, Et

θ(ωt+1)
)

= Rt ∀ρ, (9)

with ∫ ∞
−∞

rt+1(ρ)µ
(
ρ, Et

θ(ωt+1)
)
f(ρ)dρ = Rt. (10)

Given that Rt is the instrument for conducting monetary policy, equation (9) thus forges

a direct link between borrowing costs faced by risky firms and monetary policy in the

model. equation (9) also implies

rt+1(ρ) = Rt

µ
(
ρ, Etθ(ωt+1)

) . (11)

6In Bordalo et al. (2018), households are willing to supply any amount of capital to a firm with
riskiness ρ as long as the interest rate makes the household indifferent between consuming and saving.
Combined with no arbitrage on the rate of return on debt by a firm of riskiness ρ, this implies that the
expected return on the risky firm debt has to be equal to 1

β , ∀ρ.
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A firm of riskiness ρ maximizes expected profits (πet+1(ρ))

πet+1 =
[
kt+1(ρ)α − rt+1(ρ)kt+1(ρ)

]
µ
(
ρ, Et

θ(ωt+1)
)
. (12)

Using equation (11) to solve for rt+1(ρ) and plugging into the profit function of the firm

in equation 12, implies that a firm of riskiness ρ solves

max
kt+1(ρ)

[
kt+1(ρ)α − Rt

µ
(
ρ, Etθ(ωt+1)

)kt+1(ρ)
]
µ
(
ρ, Et

θ(ωt+1)
)
∀ρ. (13)

The optimal choice of capital, given Rt, ρ, and Etθ(ωt+1) is

kt+1(ρ) =
 Rt

αµ
(
ρ, Etθ(ωt+1)

)
 1
α−1

. (14)

Using the expression for rt+1(ρ), the spread S(ρ, Etθ(ωt+1), Rt) on risky debt issued by a

firm indexed by riskiness ρ relative to the risk-free rate Rt can be computed as

S(ρ, Etθ(ωt+1), Rt) = Rt

µ
(
ρ, Etθ(ωt+1)

) −Rt = Rt

 1

µ
(
ρ, Etθ(ωt+1)

) − 1
. (15)

An improvement in expectations about the future state increases the probability of

debt repayment µ
(
ρ, Et

θ(ωt+1)
)

and thus dampens the credit spread. Likewise, given

Et
θ(ωt+1), an increase in riskiness ρ reduces the probability of successful debt repayment

and increases the credit spread. Integrating equation (15) with respect to ρ, we get the

average credit spread in the economy, St(Etθ(ωt+1), Rt) with

St(Etθ(ωt+1), Rt) =
∫ ∞
−∞

S(ρ, Etθ(ωt+1), Rt)f(ρ)dρ (16)
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Solving for µ
(
ρ, Et

θ(ωt+1)
)
as a function of S(ρ, Etθ(ωt+1)), the optimal choice of capital

in equation (14) can be expressed as

kt+1(ρ) =
 α

S(ρ, Etθ(ωt+1)) +Rt

 1
1−α

(17)

Thus for a given value of ρ, ceteris paribus, an increase in Et
θ(ωt+1) implies higher

expected output produced by a firm of riskiness ρ. Likewise, ceteris paribus, an increase

in Etθ(ωt+1) implies the borrowing cost (rt+1(ρ)) faced by a firm of riskiness ρ decreases. It

is important to highlight here that ceteris paribus, both the credit spread and investment

by a firm of riskiness ρ, would also change under the assumption of rationality; however,

belief distortions via θ manifests as a component that now captures the overreaction

relative to this rational baseline. equation (17) is key to understanding the dynamics

of real activity in the model since it links expectations and monetary policy to credit

spreads, investment, and hence output in the model. Since the paper focuses on isolating

the sentiment channel of monetary policy transmission, I examine the supply side and pin

down behavior of risky firms and risk-neutral financial intermediaries exclusively. The

model can be closed along the lines of Smets and Wouters (2007). Here I just focus on

equilibrium conditions above to motivate the empirical specification.

2.6 Monetary Policy

I assume that the central bank conducts monetary policy according to a simple rule

that includes a systematic component as well as surprises to policy, with

Rt = R + αx(ωt − ω) + εit + εfgt−1; εit
iid∼ N(0, σ2

i ) and εfgt
iid∼ N(0, σ2

fg). (18)

R is the interest rate in steady state. Here αx > 0 corresponds to the systematic com-

ponent of policy that responds to deviations of ωt from its steady state. ωt in this

environment can be interpreted to be a good indicator of the output gap in the economy.
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I discuss this feature along with the evolution of the ωt and in detail in Section 2.7 below.

When the economy is weak with (ωt − ω) < 0, the central bank systematically eases

policy by an amount αx(ωt − ω) < 0; likewise, in an overheating economy the central

bank systematically tightens policy by an amount αx(ωt − ω) > 0.

Similar to the interpretation in Campbell, Fisher, Justiniano, and Melosi (2016), the

surprise component of monetary policy consists of a shock to the interest rate εit and a

shock to forward guidance εfgt−1. The first term εit is the usual contemporaneous monetary

policy disturbance (analogous to the policy surprise in the current federal funds rate),

and the second term εfgt−1 can be interpreted as a forward guidance shock because they

are revealed to the public before they are applied to the policy rule.7

2.7 Evolution of Expectations and the Underlying State of the Economy

I conclude the model description by specifying the evolution of the state of the econ-

omy ωt. Specifying how ωt evolves is the second point of departure from Bordalo et al.

(2018). Bordalo et al. (2018) allow the state to evolve simply as an exogenous process

which can be interpreted to be the source of cycles in their model. I deviate from Bordalo

et al. (2018) and endogenize the evolution of ωt and relate it to the output gap in the

model economy. Aggregate output in the economy evolves as

yt =
∫ ∞
−∞

kt(ρ, Eθ
t−1(ωt), Rt−1)αI(ρ, ωt)f(ρ)dρ (19)

where

I(ρ, ωt) =


1 ωt ≥ ρ

0 ωt < ρ.
(20)

Given that kt(ρ, Eθ
t−1(ωt), Rt−1) is predetermined and unaffected by the realization of ωt,

an increase in ωt relaxes the constraint ωt ≥ ρ, implying that aggregate output is an

increasing function of ωt. Likewise, the output gap yt− yss, defined relative to the steady
7The framework can be extended to allow for a sequence of forward guidance shocks. For simplicity,

I define the forward guidance shock to contain a single surprise.
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state output, is an increasing function of ωt. Given the distribution of ρ, ωt is therefore

a sufficient statistic to describe the output gap in period t.8

Finally, I assume that ωt evolves as

ωt = (1− b)ω + bωt−1 − c(Rt −R) + εxt ; εxt
iid∼ N(0, σ2

x). (21)

Here, ω is steady state value of ωt. Equation 21 can thought of as a simple backward

looking IS curve.

Plugging in the interest rate rule, equation (18), in equation (21) yields

ωt − ω = ρ1(ωt−1 − ω)− ρ2(εit + εfgt−1) + ρ3ε
x
t (22)

where ρ1 = b
1+cαx , ρ2 = c

1+cαx and ρ3 = 1
1+cαx . An increase in εxt in the model relaxes

the constraint ωt ≥ ρ, and the state of the economy becomes safer for riskier firms to

produce. Equivalently, negative shocks to εxt increase the level of slack in the economy as

fewer firms are deemed sufficiently safe for production. The effect of shocks to monetary

policy on ωt operates similarly, with contractionary surprises increasing the slack and

expansionary shocks relaxing the constraint and expanding production. Additionally,

given this interpretation of ωt, the idiosyncratic riskiness ρ underlying firms can also

be interpreted as the idiosyncratic firm efficiency in the model environment, with more

efficient firms remaining active in production as the economy worsens.

Optimal Forecast by Diagnostic Agents Given the specification for ωt in equation

(21), how do the forecasts of agents with diagnostic beliefs evolve in this economy? Eθ
t ωt+1

is solved using equation (7) such that

Eθ
t ωt+1 = ω + ρ1(ωt − ω)− ρ2ε

fg
t + θ

(
ρ1ρ3ε

x
t − ρ2

(
εfgt + ρ1ε

i
t

))
(23)

8Section B of the appendix examines this in more detail.
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As seen from equation (23), diagnostic agents extrapolate past shocks in the future fore-

cast of ωt+1.9 To highlight the impact of diagnosticity more clearly equation (24) below

summarizes the forecast by a rational agent

Etωt+1 = ω + ρ1(ωt − ω)− ρ2ε
fg
t . (24)

Finally, equations (15), (17), (18), (21) and (23) summarize the nonlinear equilibrium

conditions of the model.

2.8 Sentiments, Real Activity and the Interaction Effect

To explain the mechanism underlying the sentiment channel of monetary policy trans-

mission and motivate the empirical model, I take a first-order approximation of the firm-

level credit spread, S(ρ, Etθ(ωt+1), Rt), with respect to Etθ(ωt+1) and Rt around the steady

state of the model, yielding

S(ρ, Etθ(ωt+1), Rt)−Sρss(ρ, ω,R) =
 1
µ
(
ρ, ω

)−1
(Rt−R)−Rµ

′
2(ρ, ω)
µ(ρ, ω)2

(
Et

θωt+1−ω
)

(25)

where

Sρss(ρ, ω,R) =
 1
µ
(
ρ, ω

) − 1
R

is the credit spread faced by a firm of riskiness ρ in steady state and µ′2(ρ, ω) is the deriva-

tive of µ(., .) with respect to the second argument. Integrating both sides of equation

(25) with respect to ρ, we have

St − Sss = σ0(Rt −R)− σ1
(
Et

θ(ωt+1)− ω
)

(26)

9The detailed derivation of equation (23) can be found in Section C of the appendix.
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where Sss = R
∫∞
−∞

 1

µ

(
ρ,ω

) − 1
f(ρ)dρ is the economywide credit spread in steady state,

σ0 =
∫∞
−∞

 1

µ

(
ρ,ω

) − 1
f(ρ)dρ and σ1 = R

∫∞
−∞

µ′2(ρ,ω)
µ(ρ,ω)2f(ρ)dρ. Using equation (23), and

substituting for Eθ
t ωt+1 in equation (25) yields

St − Sss = σ0(Rt −R)− σ1ρ1(ωt − ω) + ρ2ε
fg
t − σ1θ

(
ρ1ρ3ε

x
t − ρ2

(
εfgt + ρ1ε

i
t

))
(27)

If θ = 0, we revert to the rational expectations paradigm with agents reacting optimally

to news or shocks in the economy. Thus, by setting θ = 0, in equation (27), we recover

the compensation demanded by a rational agent for bearing default risk. Using this

definition, the spread SRt demanded by a “rational” investor is

SRt − Sss = σ0(Rt −R)− σ1ρ1(ωt − ω) + ρ2ε
fg
t . (28)

Given SRt , the residual component of borrowing costs (St − SRt )

St − SRt = −σ1θ
(
ρ1ρ3ε

x
t − ρ2

(
εfgt + ρ1ε

i
t

))
(29)

quantifies the compensation in excess of what a rational investor demands due to optimism

or pessimism in the economy. Similarly, up to first order, the firm-level capital choice

kt+1(ρ) or investment,

kt+1(ρ,Etθ(ωt+1), Rt)− kss(ρ, ω,R) =

− α
1

1−α

1− α

[
1

S(ρ, ω,R) +R

] 1
1−α−1[(

S(ρ,Etθ(ωt+1))− S(ρ, ω,R)
)

+
(
Rt −R

)]
. (30)

where kss(ρ, ω,R) =
[

α
S(ρ,ω,R)+R

] 1
1−α

is the capital owned by a firm of riskiness ρ at steady

state. Integrating both sides of equation (30) with respect to ρ, up to a first-order
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approximation gives us

kt+1 − kss = −σk1

(St − Sss)+
(
Rt −R

). (31)

Where, kss =
∫∞
−∞

[
α

S(ρ,ω,R)+R

] 1
1−α

f(ρ)dρ is the total capital stock in the economy at

steady state, and σk1 =
∫∞
−∞

α
1

1−α

1−α

[
1

S(ρ,ω,R)+R

] 1
1−α−1

f(ρ)dρ. Using equations (28) and (29),

kt+1 can be written as a sum of two parts, the first part (kRt+1) quantifying the relation

between real activity and the rational component of credit spreads in the model and the

second part (kt+1 − kRt+1) purely quantifying the effect of sentiments with

kRt+1 − kss = −σk1

(SRt − Sss)+
(
Rt −R

) (32)

and

kt+1 − kRt+1 = −σk1

(St − SRt )
 = σk1σ1θ

ρ1ρ3ε
x
t − ρ2

(
εfgt + ρ1ε

i
t

) (33)

respectively. The law of motion of investment combining both these effects is

kt+1 − kss =
−σk1(SRt − Sss)+

(
Rt −R

)
︸ ︷︷ ︸

Direct Effect

+ θσk1σ1

[
ρ1ρ3ε

x
t − ρ2

(
εfgt + ρ1ε

i
t

)]
︸ ︷︷ ︸

Sentiment Channel

 (34)

There are two channels through which changes in monetary policy impact kt+1. The

first channel is the direct effect. So, what happens if the central bank conducts surprise

tightening? Irrespective of whether the economy is experiencing other structural shocks

(i.e. εxt 6= 0), through the equalization of returns channel quantified by the coefficient of

(Rt−R) in equation (28), a contractionary monetary policy surprise generates an increase

in SRt . kRt+1 decreases both due to direct effect of the surprise tightening, quantified by

the coefficient of (Rt −R) in equation (34), as well as through the impact of SRt on kRt+1.

These impacts of a surprise monetary policy tightening on investment and the credit

spread constitute the “direct effect” in the transmission of monetary policy shocks.
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The second channel is the interaction effect quantifying the impact of diagnosticity-

driven sentiments. Starting from an initial condition with εxt = 0, as predicted by equation

(34), a surprise policy tightening (easing) endogenously generates pessimism (optimism)

in the model. Consequently, the forecast for period t + 1 is lower (higher) than what

a rational agent predicts. Given the link between default and the future state of the

economy, this excess pessimism (optimism) causes the credit spread to increase (decrease)

and, in turn, investment to decrease (increase) by even more. Moreover, note that this

channel co-exists simultaneously with the direct effect. If θ = 0, the impact of surprise

monetary policy tightening (easing) would correspond only to the direct effect. The

model therefore generates the following testable implications.

Testable implication 1: If an econometrician regresses investment on monetary policy

shocks, investment should decrease (increase) in response to a contractionary (expansion-

ary) surprise in the policy instrument via the direct effect.

Testable implication 2: If an econometrician regresses investment on a measure of

monetary policy shocks and the interaction between a measure monetary policy shocks

and a measure of diagnosticity, then investment should decrease (increase) in response

to the contractionary (expansionary) surprise, and by more than what is predicted by

the “direct effect”. That is, controlling for the direct effect, we can empirically test if

the contribution of the sentiment channel is statistically significant and quantitatively

important.

3 Empirical framework

In this section, I set up the empirical model that tests the model predictions summa-

rized in the previous section. The usual approach to quantifying the dynamic impact of

monetary policy shocks, using the method of local projections, involves estimating regres-

sion coefficients of the relevant dependent macroeconomic variable at t+ h on identified

surprises along with controls and reporting the coefficient on the measure of monetary

policy surprise as estimated impulse response at the desired horizon (Ramey, 2016). That
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is, following Jordà (2005) estimate

xt+h = αh + ψh(L)zt + βhft + εt+h. (35)

Here, x is the macroeconomic variable of interest, z is a vector of control variables, ψh(L)

is a polynomial in the lag operator, and ft is the empirical measure of the monetary policy

surprise. The coefficient βh thus characterizes the impact of a monetary policy shock at

horizon h for the variable x. The vector of control variables usually contains lags of real

activity, lags of a relevant price index, and lags of a policy instrument capturing the

policy stance.

I test the coexistence of the sentiment channel, consistent with Testable Implication

2 alongside the usual direct effect defined in equation (36) by augmenting equation (36)

with an interaction term such that

xt+h = αh + ψh(L)zt + βhft + γhftθt + εt+h. (36)

The coefficient γh in equation (36) now captures the interaction effect between monetary

policy surprises and sentiment induced by diagnosticity (θt) at horizon h. The main

ingredients needed to test the existence and strength of the sentiment channel alongside

the direct effect include a measure of monetary policy surprise (ft) and an empirical

measure of diagnosticity (θt).

Measuring Monetary Policy Surprises I measure monetary policy surprises (ft)

in equation (37) using high-frequency changes in the interest rate around a tight thirty-

minute window bracketing FOMC announcements (along the lines of Gurkaynak et al.

(2005), Gertler and Karadi (2015), Nakamura and Steinsson (2018), Miranda-Agrippino

and Ricco (2021), Swanson (2021)). In particular, I identify surprises following the ap-

proach in Gurkaynak et al. (2005) and later extended in Swanson (2021) and use the

one-dimensional measure of policy surprises consistent with Nakamura and Steinsson
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(2018). In order to capture some of the effects of forward guidance as well as changes in

the federal funds rate, I follow Nakamura and Steinsson (2018) and construct the mone-

tary policy surprise measure as the first principal component of federal funds futures and

Eurodollar futures out to a horizon of one year. This measure thus effectively quantifies

the the conduct of monetary policy throughout the sample from 07/1991 to 06/2019.

In the theoretical model, monetary policy is conducted via changes in the real inter-

est rate. In my empirical analysis, monetary policy shocks are identified as the surprise

component of the nominal interest rate around a thirty minute window of FOMC an-

nouncements. However, high-frequency changes in the nominal interest rate correspond

closely to surprises in the real interest rate as long as inflation expectations do not move

as much as the nominal interest rate.

Measuring Diagnosticity In the data, diagnosticity underlying belief formation is

not directly observable. However, the extent of diagnosticity in the data can be inferred

indirectly using the results from the theoretical model. The theoretical model predicts

that the average credit spread can be decomposed into two parts in the presence of

diagnosticity. The first part captures the compensation demanded by a rational investor

for bearing default risk and uncertainty in the economy. The second part captures the

impact of sentiments on borrowing costs via the extent of diagnosticity. Furthermore,

this second component (as per the theory) should be zero if the extent of diagnosticity is

zero.10

Therefore, if it is possible to decompose the credit spread in the data into components

that correspond to a compensation for observable measures of risk (such as default risk,

duration risk, and uncertainty in the economy) and a compensation over and above

these observable factors, then the latter can be interpreted to quantify compensation

over and above what is demanded by a rational investor. Consistent with the theoretical

model, this latter component depends on the extent agents overreact to news or shocks
10This component can also be zero if there are no structural shocks in the economy at that point;

however, if the extent of diagnosticity is zero, then this component should always be zero.

22



in the economy and, therefore, a function of diagnosticity in belief formation along with

structural shocks.

I use this intuition in the empirical analysis to quantify diagnosticity and measure

it using the excess bond premium (EBP) constructed in Gilchrist and Zakrajsek (2012).

Gilchrist and Zakrajsek (2012) construct the EBP measure in two steps. In the first step,

Gilchrist and Zakrajsek (2012) construct their measure of the credit spread (Gilchrist-

Zakrajsek spread) for nonfinancial firms by subtracting firm-specific yields from a syn-

thetic risk-free security that mimics exactly the cash flows of the corresponding corporate

debt instrument. Next, Gilchrist and Zakrajsek (2012) construct the EBP by purging

their measure of the credit spread for nonfinancial firms of not only the risk due to ex-

pected default but also any risk or rsk premium that is correlated with expected default

as well. Furthermore, in removing default risk in constructing the EBP, Gilchrist and Za-

krajsek (2012) additionally control for bond-specific characteristics that could potentially

influence bond yields through a term premium or a liquidity premium channel.

A more direct approach to quantifying diagnosticity-driven sentiment is constructing

an empirical measure following Maxted (2023). Maxted (2023) constructs an empirical

measure of sentiment using forecast errors for GDP growth rate. In the context of the

present article, I construct a similar measure using forecast errors underlying the high-

yield credit spread for the US using proprietary data provided by Moody’s. However, this

data on forecast errors is only available between 07/2007 and 12/2019. With the caveat

of the restricted sample, the correlation between the empirically constructed measure

following Maxted (2023) and the lagged EBP is about 0.6. Moreover, to further check

the validity of the lagged EBP as a suitable empirical proxy for diagnosticity-driven

sentiments, I estimate local projections quantifying the magnitude of the interaction

effect on the subsample where these two overlap. The two measures provide very similar

results; if anything, the results with the lagged EBP as a measure of sentiment are more

conservative. These results are presented in detail in Section D.1 of the appendix.

I thus use the EBP in t − 1 to quantify the state of diagnosticity in period t. Using
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a lagged value of EBP to measure diagnosticity also makes the measure exogenous to

shocks realized in period t. Furthermore, the EBP fluctuates in the data, with positive

(negative) values denoting a higher (lower) price of bearing risk controlling for expected

default and uncertainty. Given this range, the EBP can be zero or very close to zero

in the data. The empirical analysis in this way considers periods where the extent of

overreaction to shocks is close to zero. With this measure, the empirical specification can

be expressed as

xt+h = αh + ψh(L)zt−j + βhft + γhftEBPt−1 + εt+h. (37)

Controls and Estimation The baseline set of controls zt comprises the logarithm of

the Index of Industrial production, the logarithm of the CPI, the Gilchrist and Zakrajsek

(2012) Excess Bond Premium, and the market yield on U.S. Treasury Securities at 1-Year

Constant Maturity, i.e., zt = [IPt, CPIt, EBPt, TBill1,t].11 Equation (37) is estimated

using monthly data between 07/1991 and 06/2019 and a lag-length of 12. The monthly

measure of monetary policy surprises is constructed by summing all of the high-frequency

surprises each month. To account for the serial correlation in the error terms, I use the

Newey-West correction for calculating standard errors.

Impulse Responses, the Role of Sentiments The general definition of an impulse

response function IRF (xt+h|dt = d;Zt), for a variable xt, to a shock dt at time t, at

horizon h is given by

IRF (xt+h|dt = d;Zt) = Et(xt+h|dt = d;Zt)− Et(xt+h|dt = 0;Zt).
11Data used for constructing local projections can be accessed as follows: IPt–

https://fred.stlouisfed.org/series/INDPRO CPIt– https://fred.stlouisfed.org/series/CPILFESL, EBPt
– https://www.federalreserve.gov/econresdata/notes/feds-notes/2016/recession-risk-and-the-excess-
bond-premium-accessible-20160408.html, TBill1,t https://fred.stlouisfed.org/series/DGS1
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Applying this definition, the total effect of a 1-unit surprise tightening in ft, at horizon

h on variable x, is given by

IRF (xt+h|ft = 1;Zt) =
(
βhft + γhEBPt−1ft|ft = 1

)
=
(
βh + γhEBPt−1

)
. (38)

βh, therefore, quantifies the strength of the direct effect at horizon h and, given EBPt−1,

γh quantifies the interaction effect via the sentiment channel at horizon h. Thus, given

EBPt−1, if the estimate of γh is insignificant, this eliminates the role of the sentiment

channel. However, if γh is estimated to be significantly different from zero, the total

effect of a 1-unit surprise tightening at horizon h, depends on both the direct effect and

interaction effect.

To put the scale of the prevailing sentiment in the economy, EBPt−1, in perspec-

tive to, Figure 1 plots the time variation in the excess bond premium. Figure 1 shows

that the EBP fluctuates significantly and frequently breaches the one-standard-deviation

threshold. More importantly, there are several episodes when the EBP is much larger

(both positive and negative). Considering this evidence, when graphing impulse response

Figure 1: Time variation in the standardized excess bond premium (EBP). Dashed lines denote
1-standard-deviation bands.

25



functions, I fix the value of EBPt−1 = 1 to interpret the quantitative importance of

the sentiment-driven interaction effects. Fixing the value of EBPt−1 = 1 allows me to

compare the relative strength of the direct effect vis-à-vis the sentiment-driven interac-

tion effect. The total effect, on impact for a 1-unit surprise to monetary policy, with

EBPt−1 = 1 is given by

IRF (xt+h|ft = 1;Zt, EBPt−1 = 1) = βh + γh. (39)

Quantifying the Scale of Monetary Policy Surprises Finally, before reporting the

results, I discuss how to interpret the scale of monetary policy surprises. To quantify the

scale of a one-unit increase in the one-dimensional measure of monetary policy surprise,

the Eurodollar futures of different maturities (the first four quarterly Eurodollar futures –

ED1-ED4 respectively) is regressed on the estimated high-frequency measure of surprises

along with a constant. Table 1 shows that when the measure of monetary policy surprises

increases by 1-unit, this generates a 7.91 basis point increase in the yield of a Eurodollar

future in the very short run (maturity of one quarter), and 10.54 basis point increase in

the Eurodollar futures maturing at a longer horizon (maturity of 4 quarters).

Eurodollar Future 1 2 3 4

Effects of monetary policy surprise

Baseline Surprises 7.91 9.44 10.28 10.54

Table 1: Effect of a one-unit change in my high-frequency measure of monetary policy surprises
on Eurodollar futures of different maturities (1 through 4 quarters ahead)

4 Results

The baseline results are obtained by estimating equation (37) with monetary policy

surprises identified using the one-dimensional measure in Nakamura and Steinsson (2018)

and Bauer and Swanson (2023).
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4.1 Local Projections with the Baseline Measure of Monetary Policy Sur-

prises

According to Testable Implication 1, βh should be less than zero for a 1-unit surprise

tightening. According to Testable Implication 2, given EBPt−1 > 0, and controlling for

the direct effect given by βh, γh should be less than zero for a 1-unit surprise tightening.

To investigate these implications, Figure 2 plots the response of Industrial Production

to a one-unit surprise monetary policy tightening. The left column of Figure 2 presents

the usual direct effect of quantifying the effects of monetary policy surprises (βh), and

the right column plots the interaction effect (γh). For simplicity, I report results here

using the raw high-frequency instrument for monetary policy discussed above; later, in

Section 4.2, I consider orthogonalizing this instrument with respect to relevant economic

news, as recommended by Bauer and Swanson (2023).

The direct effect is contractionary and qualitatively consistent with earlier studies ex-

amining the impact of exogenous tightening in monetary policy. I estimate that industrial

production declines gradually, hitting a trough of about -0.7% after about 18 months.

These estimates are somewhat larger than Gertler and Karadi (2015), but consistent with

Bauer and Swanson (2023).12

Let us now examine if the interaction effect works over and above the direct effect to

generate additional quantitative implications for real effects related to monetary policy

surprises. The right column of Figure 2 plots the estimated interaction effect γh, as-

suming a 1-unit positive value of the EBP in t− 1, which is consistent with moderately

pessimistic market sentiment. Figure 2 shows that, γh is negative and significant at a

confidence level of 90%. Thus, the interaction effect between sentiments and monetary

policy surprises contributes to the decline in industrial production in response to a 1-unit

surprise tightening. Note, that much of the decline in activity attributed to the inter-
12Gertler and Karadi (2015) consider a 25bp tightening in the one-year government bond rate and

estimate contractionary effects in IP with a maximum decline of about -0.4%. A one-unit tightening in
the measure I use corresponds to a 10.54 bp increase in the four-quarter ahead Eurodollar future. After
adjusting for the shock size, the direct effects are consistent with Bauer and Swanson (2023). Bauer and
Swanson (2023) consider a surprise 25 bp tightening to the one-year T-Bill rate.
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Response of Industrial Production

Figure 2: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(IP ). Right column: Interaction effect of a one-unit surprise monetary policy tightening
on log(IP ). Shaded areas denote 90% confidence bands (Newey-West). A one-unit surprise
monetary policy tightening corresponds to approximately a 10.5 basis point increase in four
quarters ahead Eurodollar future. The interaction effect in the right column is plotted, assuming
a one-unit positive value of the EBP in the initial period.

action effect appears in the medium term, at around six months. The initial increase

attributed to the sentiment channel in the first 5 months of transmission goes away once

I control for predictability of monetary policy surprises to relevant macroeconomic news.

Section 4.2 examines these results.

Relative to the direct effect, what is the magnitude attributed to the interaction effect

quantifying the sentiment channel? The direct effect of a 1-unit surprise tightening is

contractionary; however if we examine the interaction effect (right panel of Figure 2), we

observe that at each horizon, it is almost as big as the direct effect. Moreover, the effects

are estimated more precisely.

Figure 2 plots the percent change in industrial production estimated directly using

data underlying macro variables and sentiments (and thus might be driven by the scale).

For comparison, Figure 3 now plots the impulse responses estimated using standardized

data to isolate better the quantitative contribution of the direct and the interaction effects.

Figure 3 plots the response of industrial production for a one-unit surprise tightening

via the direct effect and the interaction effect on the same axes, given a one-standard-

28



deviation positive value of the EBP in t− 1. Note that, Figure 3 compares the strength

of the two channels assuming a one standard deviation positive value of the EBP in t−1;

however, sentiments are time-varying and when sentiments are extremely pessimistic,

the real effects via the sentiment channel can exceed the direct effect and in the process

increase the impact of monetary policy on real activity.

Figure 3: Comparing the direct effect (crossed red line), interaction effect (dashed red line),
and total effect (black line) of a one-unit surprise monetary policy tightening on log(IP ) using
standardized data. Shaded areas denote 90% confidence bands (Newey-West). The solid black
line plots the total effect given by βh + γhEBPt−1, assuming a one std. deviation positive value
of EBP in t− 1. A one-unit surprise monetary policy tightening corresponds to approximately
a 10.5 basis point increase in four-quarter-ahead Eurodollar future.

Equivalently, the results in Figures 2 and 3 suggest that surprise monetary policy eas-

ing is significantly more effective in stimulating the economy when credit-market senti-

ments are particularly pessimistic. Likewise, when sentiments are particularly optimistic,

the tightening necessary to restrain the economy is larger.13

Figure 4, plots the impulse response functions for the EBP to a 1-unit monetary
13Although the sample for the empirical analysis ends at 07/2019, during the episode of recent tight-

ening through 2022 and 2023, the EBP was negative for a substantial part of the sample, indicating
optimism in the economy. Consistent with my empirical results, the realized tightening dampened real
activity less than perhaps expected. The average value of the EBP during 2022 was around -16 basis
points or equivalently, -0.4 standard deviations below the average.
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policy shock. The left column, as before, presents the direct effects. Consistent with

other studies such as Gertler and Karadi (2015) and Bauer and Swanson (2023), on

impact, credit-market sentiment measured using the excess bond premium increases, and

the effect is somewhat persistent. The right column studies the interaction effect. What

stands out is the gradual increases in the excess bond premium followed by a decline.

The increase due to the interaction effect is significant a few periods after the shock.

Similar to the response of industrial production, the strength of the interaction effect is

not only stronger but more precisely estimated relative to the direct effect. The presence

of the interaction term thus potentially creates a feedback mechanism that reinforces the

impact of initial tightening when sentiments are pessimistic and dilutes the same when

sentiments are optimistic. Section G in the appendix plots the response of CPI and the

yield on the one-year Treasury bill. These results are discussed in greater detail when I

examine the impact of orthogonalizing monetary policy surprises in Section 4.2.

Response of the Excess Bond Premium

Figure 4: Left column: Direct effect of a one-unit surprise monetary policy tightening on the
EBP . Right column: Interaction effect of a one-unit surprise monetary policy tightening on
EBP . Shaded areas denote 90% confidence bands (Newey-West). A one-unit surprise monetary
policy tightening corresponds to approximately a 10.5 basis point increase in four-quarter-ahead
Eurodollar future. The interaction effect in the right column is plotted assuming a one-unit
positive value of the EBP in the initial period.
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4.2 Controlling High Frequency Surprises for Other Macroeconomic An-

nouncements

The analysis in the previous section uses high-frequency identification to identify sur-

prises in monetary policy. This approach usually allows the identification of a “true

surprise” since the possibility of the release of relevant non-monetary news around this

window is small. However, Ramey (2016), Miranda-Agrippino and Ricco (2021), and

Bauer and Swanson (2023) suggest that even for a tight thirty-minute window surround-

ing FOMC announcements, the extracted surprises might not be truly exogenous and

contain a predictable component (especially when daily surprises are cumulated at a

monthly level). This predictability may bias the estimated impulse response functions

of macroeconomic variables to a monetary policy shock, because part of the estimated

effects could be due to the correlated economic and financial news rather than to mone-

tary policy itself. To check the robustness of the sentiment channel stemming from the

interaction between the lagged EBP and monetary policy surprises to this possible bias,

I next construct local projections using an “orthogonalized measure” of surprises.

This orthogonalized measure is constructed by orthogonalizing the baseline high-

frequency measure of surprises (ft) introduced in Section 3 to relevant macroeconomic

and financial news around the announcement window. The choice of variables for orthog-

onalization follows Bauer and Swanson (2023) and consists of nonfarm payroll surprise,14,

employment growth,15 the S&P 500,16 the slope of the yield curve,17 commodity prices18

and the treasury skewness.19 To orthogonalize the baseline measure of surprises to these
14The surprise component of the most recent nonfarm payrolls release prior to the FOMC announce-

ment measured as the difference between the released value of the statistic minus the median expectation
for that release obtained from the Money Market Services survey.

15The log change in nonfarm payroll employment from one year earlier to the most recent release
before the FOMC announcement

16The log change in the S&P500 stock price index from three months (65 trading days) before the
FOMC announcement to the day before the FOMC announcement.

17Measured as the change in the slope of the yield curve from three months before the FOMC an-
nouncement to the day before the FOMC announcement, measured as the second principal component
of one-to ten-year zero-coupon Treasury yields from Gurkaynak et al. (2007).

18Measured as the log change in the Bloomberg Commodity Spot Price index (BCOMSP) from three
months before the FOMC announcement to the day before the FOMC announcement

19Measured by the implied skewness of the ten-year Treasury yield, measured using options on 10-year
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macroeconomic and financial variables, I estimate a regression of the form

ft = α + βXt + εt (40)

I denote the orthogonalized measure of monetary policy surprises by f̂t = εt. I next

use this measure of monetary policy surprise, orthogonal to relevant macroeconomic and

financial news, to estimate local projections of the form

xt+h = αh + ψh(L)zt + βhf̂t + γhf̂tEBPt−1 + εt+h. (41)

Eurodollar Future 1 2 3 4

Effects of 1-unit monetary policy surprise

Baseline Surprises 7.906 9.4455 10.2775 10.5445
Orthogonalized surprises 7.8983 9.3333 10.1204 10.4433

Table 2: Effect of a one-unit change in my high-frequency measure of monetary policy surprises
on Eurodollar futures of different maturities (1 through 4 quarters ahead). Orthogonalized
surprises are constructed by removing the correlation of relevant macroeconomic and financial
news that predate the monetary policy announcements from the baseline measure.

Table 2 summarizes the scale of a one-unit increase in the measure of monetary policy

surprise orthogonalized to relevant macroeconomic and financial news that predate mon-

etary policy announcements. Figures 5-8 compare the responses of macro variables to

orthogonalized (blue line) surprises relative to the baseline surprises (red line) presented

in the earlier section.

Orthogonalizing the monetary policy surprises with respect to macroeconomic and

financial news amplifies the magnitude and precision of both the estimated direct ef-

fects of monetary policy and the interaction effects with sentiments. The right column

of Figure 5 shows that orthogonalizing surprises to macroeconomic and financial news

dampens the increase in activity in the first five months of propagation while amplifying
Treasury note futures with expirations in 1–3 months, averaged over the preceding month, from Bauer
and Chernov (2021).
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the contractionary effects in the short to medium run. Table 3 below summarizes the

trough response of industrial production, highlighting the direct, interaction, and total

effect for both the baseline measure of monetary policy surprise and the orthogonalized

measure of surprise.
Response of Industrial Production

Figure 5: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(IP ). Right column: Interaction effect of a one-unit surprise monetary policy tightening
on log(IP ). Shaded areas denote 90% confidence bands (Newey-West). A one-unit surprise
monetary policy tightening for the baseline measure corresponds to approximately a 10.5 basis
point increase in four-quarter-ahead Eurodollar future. A one-unit surprise monetary policy
tightening for the orthogonalized measure corresponds to approximately a 10.4 basis point
increase in four-quarter-ahead Eurodollar future. The interaction effect in the right column is
plotted assuming a 1-unit positive value of of the EBP in the initial period.

Baseline measure of monetary policy surprise Direct
effect

Interaction
effect

Total
effect

Month of hitting trough response 21 16 16
Trough response in % -0.70 -0.65 -1.35

Orthogonalized measure of monetary policy surprise

Month of hitting trough response 21 15 16
Trough response in % -1.26 -0.87 -1.94

Table 3: Summarizing the trough response (calculated as the maximum decline) in log(IP ) in
response to a one-unit surprise tightening via both the baseline and the orthogonalized measure
of monetary policy surprise when EBP has a one-unit positive value in t− 1.

Figure 6 report analogous results for the EBP. Similar to the response of Industrial
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Response of Excess Bond Premium

Figure 6: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(CPI). Right column: Interaction effect of a one-unit surprise monetary policy tightening
on log(CPI). Shaded areas denote 90% confidence bands (Newey-West). See notes to Figure 5
and text for details.

Production, orthogonalization amplifies the response of the EBP on impact via the in-

teraction effect (right column of Figure 6). The direct effect of monetary tightening on

the EBP is comparable for both specifications.

Figure 7 plots the impact on the CPI across both measures of monetary policy sur-

prises. Figure 7 demonstrates that while the baseline specification fails to generate a

significant impact on the CPI, the interaction effect with orthogonalized monetary policy

surprises now generates a persistent decline. Put differently; an expansionary policy can

stimulate inflation when sentiments are pessimistic. Relative to industrial production,

the overall effect on the CPI is modest; the finding is intuitive nonetheless. The direct

effect is comparable across both specifications.20

Finally, Figure 8 plots the response of the yield on the one-year Treasury security,

and the responses are broadly comparable across both measures of surprises to monetary

policy.
20Gertler and Karadi (2015) examine the impact of a surprise monetary policy tightening and find

that the impact on inflation is modest. While their approach to identification using external instruments
solves the price puzzle, the impact on inflation for a 25 basis point suprise tightening, while negative
on average, is quantitatively small and significant only in the longer run. However, Bauer and Swanson
(2023), using their orthogonalized measure of monetary policy surprises in a structural VAR with external
instruments, find a bigger and more significant decline in the CPI.
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Response of CPI

Figure 7: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(CPI). Right column: Interaction effect of a one-unit surprise monetary policy tightening
on log(CPI). Shaded areas denote 90% confidence bands (Newey-West). See notes to Figure 5
and text for details.

Response of 1 year T-bill market yield

Figure 8: Left column: Direct effect of a one-unit surprise monetary policy tightening on the
one-year Treasury security. Right column: Interaction effect of a one-unit surprise monetary
policy tightening on the one-year Treasury security. Shaded areas denote 90% confidence bands
(Newey-West). See notes to Figure 5 and text for details.

Figures 5 - 8 thus illustrate that, even if we control for macroeconomic news that

might predict monetary policy surprises, the contribution of the “interaction effect” via

the sentiment channel is preserved and in many cases amplified. Moreover, to isolate

the impact on the CPI, controlling for the predictable component of policy surprises is

critical.
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4.3 Is the Interaction Effect Independent of the Cycle?

The results in the earlier section demonstrate the existence and strength of the interac-

tion effect quantifying the role of sentiments. However, what if the empirically estimated

interaction effect is simply standing in for the health of the economy and tied to the state

of the business cycle? This section checks the validity and strength of the interaction

effect while simultaneously allowing for a real-activity-driven interaction effect. If the

strength of policy transmission is more related to interactions stemming from the “real”

health of the economy, then accounting for this additional channel should eliminate or

dampen the contribution of the sentiment channel. I now test for this feature. To mea-

sure the health of “real” activity in the economy, I use the unemployment rate.21 I carry

out this exercise by augmenting equation (42)

xt+h = αh +
p∑
j=1

ψh(L)zt−j + βhf̂t + γhf̂tEBPt−1 + εt+h. (42)

with an additional channel stemming from the interaction between the unemployment

rate (ut) and monetary policy surprises

xt+h = αhψh(L)zt + βhf̂t + γhf̂tEBPt−1 + δhf̂tut−1 + εt+h. (43)

I also include the unemployment rate in the set of controls z in equations 42 and 43. In

estimating equation 43, I use the measure of orthogonalized surprises –f̂t introduced in

Section 4.2 and use standardized variables to compare the contribution of each channel

independent of scale with an additional channel stemming from the interaction between

the unemployment rate and monetary policy surprises.
21The unemployment rate is a commonly used variable to quantify the state of the economy and

distinguish between periods of high activity vis-à-vis low activity (see Ramey and Zubairy (2018) and
Sahm (2019), for instance).
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Figure 9: Top panel: Direct effect (in standard deviations) of a one-unit surprise monetary
policy tightening on log(IP ). Bottom left panel: Interaction effect (in standard deviations) of a
one-unit surprise monetary policy tightening on log(IP ) due to credit-market sentiment. Bot-
tom right panel: Interaction effect of a one-unit surprise monetary policy tightening on log(IP )
due to “real activity” channel. Light-shaded areas denote 90% confidence bands, and dark-
shaded areas denote 68% confidence bands (Newey-West). Interaction effects plotted assuming
a one standard deviation positive value of EBP and the Unemployment Rate.

Figure 9 plots estimated coefficients βh quantifying the direct effect, γh quantifying the

interaction effect stemming from the sentiment channel, and δh quantifying the interaction

effect stemming from the “real activity” channel. Figure 9 shows that even at a confidence

level of 68%, the interaction between real activity, quantified by the unemployment rate,

and monetary policy surprises is insignificant. Figure 9 also compares the direct and the

interaction effect via the credit-market sentiment channel estimated in equation (42) to
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emphasize that neither strength nor the significance of the sentiment channel is diluted

if I allow for interaction between monetary policy surprises and the unemployment rate.

The strength of the interaction effect thus continues to remain relevant. The exercise

thus shows that the interaction effect is not simply capturing the cyclical fluctuations in

real activity.

5 Robustness Checks

The analysis in Section 4 demonstrates that the interaction effect plays a key role

in the transmission of monetary policy surprises. It operates over and above the usual

direct effects through which monetary policy impacts real activity. This section further

tests the robustness of this interaction effect by controlling for important features such as

the zero lower bound, periods of financial turbulence, and aggregate measures of financial

risk. I describe each of these additional controls below. Figure 10 (and Figures 15-17 in

Response of Industrial Production

Figure 10: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(IP ). Right column: Interaction effect of a one-unit surprise monetary policy tightening on
log(IP ). Shaded areas denote 90% confidence bands (Newey-West).

Section H of the Appendix) compares the estimated direct effect and sentiment channel

via the interaction effect relative to the baseline (red) and relative to estimated effects

after removing predictability in monetary policy surprises (black). For each robustness

check, the baseline measure of monetary policy surprises (described in Section 4.1) has
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been used.

Zero Lower Bound I check the robustness of my results to the zero lower bound

(ZLB) on the nominal interest rate by dropping the periods in which the ZLB constraint

binds (01/2009− 11/2015) and re-estimate equation (36). Figure 10 (and Figures 15-17

in Section H of the Appendix) plots the results corresponding to the direct effect and the

interaction effect in crossed-red lines.

Dropping periods of financial turbulence An obvious concern in the empirical

exercise might be that the strength of the sentiment channel captured by the coefficient

between the interaction of one-period lagged excess bond premium and contemporaneous

policy surprises is driven by elevated pessimism in credit markets during the financial

crisis. To control for this feature, I drop periods of financial turbulence and re-estimate

equation (36) by dropping the sample between 07/2008 and 06/2009.22 Figure 10 (and

Figures 15-17 in Section H of the Appendix) plots these results in light-blue.

Controlling for Aggregate Risk in Financial Markets Gilchrist and Zakrajsek

(2012) construct the measure of excess bond premium to control for expected default

along with bond-specific characteristics and the term premium. By using the excess

bond premium as a measure of credit-market sentiment, I assume that once I control for

these measures commonly used to quantify financial frictions, what is left is a measure

of sentiment.

However, the results may be driven by aggregate risk in financial markets that stem

from sources different from the corporate bond markets. To check the robustness of

results to this feature, I re-estimate 37 by including a measure of aggregate financial risk.

Financial risk is being measured by the risk sub-index used for constructing the National

Financial Condition Index (Brave and Butters, 2012). The risk subindex23 captures
22This makes the estimated direct effects comparable with the analysis in Gertler and Karadi (2015),

who also evaluate the robustness of their results by dropping this period.
23The financial risk sub-index of the NFCI is constructed using data on 34 risk indicators. For details,
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volatility and funding risk in the financial sector. Like the EBP, a positive value of the

NFCI risk sub-index indicates tighter-than-average conditions implying that the readiness

of markets to bear financial risk is lower, while negative values indicate the opposite. The

set of controls zt in equation 41 now, along with lags of industrial production, the CPI,

the excess bond premium, and the yield on one-year Treasury security, includes the NFCI

financial risk sub-index. Figure 10 (and Figures 15-17 in Section H of the Appendix) plots

these results in dark blue.

6 Conclusion

I motivate a role for sentiments in the transmission of monetary policy to the economy

using a model of diagnosticity in belief formation. I then empirically analyze the existence

and strength of the proposed sentiment channel in the data. To measure diagnosticity

in the data, I use intuition from the model and quantify unobserved diagnosticity using

the lagged value of the excess bond premium, which forges a connection between senti-

ments in the data and diagnosticity in the model. My empirical results show that the

interaction effect stemming from sentiments is quantitatively significant. In particular,

monetary policy’s impact on the economy is significantly more powerful when credit mar-

ket sentiments are pessimistic than optimistic. When direct effects are combined with

sentiment-driven interaction effects, the results can explain why the potency of monetary

policy in influencing real activity varies over time.

My results have important implications for researchers in monetary economics and

monetary policymakers. For researchers, I find evidence of a new and important channel

for the transmission of monetary policy to the real economy. It would be interesting to

investigate whether a similar sentiment channel exists in other economies, such as the

Euro area, and whether a sentiment channel exists for the effects of monetary policy on

other variables. Researchers might also want to take the sentiment channel of monetary

policy into account in their own estimates of the effects of monetary policy to avoid getting

refer to https://www.chicagofed.org/research/data/nfci/background.
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biased results that depend on the state of the economy. For monetary policymakers, my

results imply that monetary policy is generally more potent in recessions and other times

when sentiments are pessimistic.
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Appendix

A Deriving the distribution under diagnostic expectations

ωt+1|ωt ∼ f θ(ωt+1|ωt) = f(ωt+1|ωt)
[
f(ωt+1|ωt)
f(ωt+1|ωt−1)

]θ 1
Z

(44)

The true Markovian distribution of fundamentals is given by

f(ωt+1|ωt) ∼ N(Etωt+1, σ
2
ω).

Applying this to equation (44),
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Simplifying the expression by collecting the linear and quadratic terms in ωt+1

f θ(ωt+1|ωt) ∝
1

σω
√

2π
exp

− 1
2

[
ω2
t+1 − 2ωt+1[Etωt+1 + θ(Etωt+1 − Et−1ωt+1)]

σ2
ω

]
f θ(ωt+1|ωt) = 1
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√
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exp

− 1
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Here Z is the normalizing constant, with Z = exp
[
− 1

2
θ(1+θ)(Etωt+1−Et−1ωt+1)2

σ2
ω

]
.

B Microfounding the state of the economy

Output – yt(ρ) produced by a firm of riskiness ρ in period t depends on capital chosen

in period t− and the realized state ωt in period t and given by

yt(ρ) = kt(ρ, Eθ
t−1(ωt), Rt−1)αI(ρ, ωt). (47)

where

I(ρ, ωt) =


1 ωt ≥ ρ

0 ωt < ρ.
(48)

Note that kt(ρ, Eθ
t−1(ωt), Rt−1) is predetermined and unaffected by the realization of ωt.

The realization of ωt determines whether a firm of riskiness ρ with capital kt(ρ, Eθ
t−1(ωt), Rt−1)

is able to produce and successfully repay it’s debt from period t− 1. A higher value of ωt

means it is more likely that a firm of riskiness ρ produces since it relaxes the constraint

ωt ≥ ρ. This implies that yt(ρ) is an increasing function of ωt ∀ρ. Given this relation, it

can be concluded that aggregate output (yt) given by

yt =
∫ ∞
−∞

kt(ρ, Eθ
t−1(ωt), Rt−1)αI(ρ, ωt)f(ρ)dρ (49)

is an increasing function of ωt. In this environment, the output in steady state yss evolves

as

yss =
∫ ∞
−∞

kss(ρ, ω,R)αI(ρ, ω)f(ρ)dρ (50)

46



In the absence of shocks, Eθ
t−1(ωt) = ω, and the steady state interest rate R = 1

β
.

Defining, the output gap with respect to steady state output in the economy (yt − yss),

and applying equation (49), implies (yt− yss) is an increasing function of ωt. In this way,

ωt is a good indicator of the of output gap in the economy. Finally, I close the model, by

specifying ωt to evolve as a backward looking IS curve with

ωt = (1− b)ω + bωt−1 − c(Rt −R) + εxt ; εxt ∼ N(0, σ2
x), c > 0. (51)

C Deriving expression for diagnostic beliefs

The output gap in the economy, ωt, evolves as

ωt = (1− b)ω + bωt−1 − c(Rt −R) + εxt ; εxt+1
iid∼ N(0, σ2

x). (52)

The central bank conducts monetary policy with

Rt = R + αx(ωt − ω) + εit + εfgt−1; εit
iid∼ N(0, σ2

i ) and εfgt
iid∼ N(0, σ2

fg).

Iterating one period forward and plugging in the value of Rt in the expression for the

output gap implies

ωt+1 − ω = ρ1(ωt − ω)− ρ2(εit+1 + εfgt ) + ρ3ε
x
t+1 (53)

where ρ1 = b
1+cαx , ρ2 = c

1+cαx and ρ2 = 1
1+cαx .

Etωt+1 = Et

[
ω + ρ1(ωt − ω)− ρ2(εit+1 + εfgt ) + ρ3ε

x
t+1

]
= ω + ρ1(ωt − ω)− ρ2ε

fg
t (54)
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Plugging in the expression for ωt

Etωt+1 = ω + ρ1(ωt − ω)− ρ2ε
fg
t = ω + ρ1

[
ρ1(ωt−1 − ω)− ρ2(εit + εfgt−1) + ρ3ε

x
t

]
− ρ2ε

fg
t

= ω + ρ2
1(ωt−1 − ω)− ρ1ρ2(εit + εfgt−1) + ρ1ρ3ε

x
t − ρ2ε

fg
t . (55)

and

Et−1ωt+1 = ω + ρ2
1(ωt−1 − ω)− ρ1ρ2ε

fg
t−1 (56)

Plugging on the values of Etωt+1 and Et−1ωt+1, from equations 54, 55 and 56,

Eθ
t ωt+1 = Etωt+1 + θ

Etωt+1 − Et−1ωt+1

 = ω + ρ1(ωt − ω)− ρ2ε
fg
t

+ θ

ω + ρ2
1(ωt−1 − ω)− ρ1ρ2(εit + εfgt−1) + ρ1ρ3ε

x
t − ρ2ε

fg
t − ω − ρ2

1(ωt−1 − ω) + ρ1ρ2ε
fg
t−1


= ω + ρ1(ωt − ω)− ρ2ε

fg
t + θ

ρ1ρ3ε
x
t − ρ1(εfgt + ρ2ε

i
t)
 (57)

D Constructing an empirical measure of sentiment

To check the robustness of the EBP as a suitable measure of sentiment, I construct

an empirical measure of sentiment using 3 month ahead forecast for the high-yield spread

and the actual high-yield spread constructed by Moody’s. The empirical measure of

sentiment is constructed following Maxted (2023).

I briefly outline the construction of this empirical measure of sentiment below. For a

more detailed examination, refer to Section A.2 of the appendix to Maxted (2023). Fol-

lowing Maxted (2023), in discrete time the information measure It quantifying a weighted

measure of current and past shocks evolves as

It =
∞∑
j=0
Kjσεt−j = σ

[
εt +

∞∑
j=1
Kjεt−j

]
. (58)

Here, K is the discount factor governing the speed of information decay. If the model is
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at a monthly frequency, K = exp(−κ/12). In contrast to Maxted (2023), the underlying

information structure in this article is consistent with Bordalo et al. (2018) with the

information measure containing only the most recent shock. This corresponds to the case

of K = 0.

Under diagnosticity, agents forecast the credit-spread in t+ 1 as

Eθ
t St+1 = EtSt+1 + θ

12It (59)

Subjective shocks, σε̂t+1 are defined as the difference between the actual value of the

credit spread realized in t + 1 and the prediction made under diagnosticity in period t

with

σε̂t+1 = St+1 − Eθ
t St+1. (60)

Applying equation (59), and substituting the value of Eθ
t St+1 in equation (60) yields

σε̂t+1︸ ︷︷ ︸
Subjective Shocks

= St+1 − EtSt+1︸ ︷︷ ︸
Objective Shocks

− θ

12It = σεt+1 −
θ

12It. (61)

Equation 61 in conjunction with equation 58 and K = 0 implies

It = σε̂t + θ

12It−1 (62)

Iterating backwards and using initial condition I0 = 1,

It =
t−1∑
j=0

(
θ

12

)j
σε̂t−j. (63)

Consistent with Maxted (2023), subjective shocks are measured using forecaster errors,

with

It =
t−1∑
j=0

(
θ

12

)j
FEHYMoodys

t−j (64)

Forecast errors in the data are measured as the difference between the actual high-yield
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credit spread minus the predicted credit spread, three months ago. Ideally, we would

like to have one-step ahead forecast errors. However, I am constrained by the availability

of data here since Moody’s only provides three step ahead monthly forecasts. Given

a calibration of θ, equation 64 can then be used to generate an empirical measure of

sentiment. To calibrate, θ I follow Bordalo et al. (2018). I first use data on annualized

credit spread between 07/2007 and 12/2019 to estimate an AR(1) process with

HY Spreadt = HY Spread+ ρhyspreadHY Spreadt−1 + εhyspreadt ; with εhyspreadt ∼ N(0, σ2)

(65)

Estimating equation 65 yields ρ = 0.844 and σ = 0.698. If θ quantifies the extent of

diagnosticity, then the forecast in t+ 1 is biased by θ× ρhyspread× σ. In constructing the

empirical measure of sentiment, θ is calibrated such that a one standard deviation in I

corresponds to a 1% bias in the credit spread forecast, i.e.,

1 = θρhyspreadσ = θ × 0.844× 0.698 =⇒ θ = 1
0.844× 0.698 = 1.699 (66)

Using this calibration and using the forecast errors in equation 65, we can obtain a mea-

sure of credit-market sentiment underlying high-yield bonds issued by Moody’s between

07/2007 and 12/2019. Table 4 below reports the correlation of this constructed measure

iof sentiment with different lags of EBP .

h=0 h=1 h=2 h=3
corr(It, EBPt−h) 0.47 0.58 0.68 0.73

Table 4: Reporting the coefficient between the empirically constructed measure of sentiment
It with the contemporaneous value of the EBP and different lags of EBP .

The subjective errors are measured using forecast errors using the difference between

the actual high-yield spread in t and the forecast made 3 months ago in t − 3. This

feature attenuates the correlation between It and the one-period lagged value of the
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EBP. However, as I increase the lags underlying EBP the strength of the co movement

increases with the correlation being 0.73 for a thrice lagged value of the EBP. Irrespective

of this feature, overall Table 4 suggests that the lagged value of EBP is a good empirical

proxy to quantify diagnosticity implied sentiment.

D.1 Comparing predictions using different measures of sentiments

Next, I use the empirically constructed measure of sentiment and construct impulse

responses to a 1-unit monetary policy tightening. I compare the strength of the estimated

sentiment channel with what is obtained with the EBP as the measure of sentiment.

The empirically constructed measure of sentiment is constructed using forecast errors

for Moody’s high yield credit spread between 07/2007 and 12/2019, and the measure

of monetary policy surprises are available between 07/1991 and 06/2019. Given the

data availability, the sample for estimating impulse responses using local projections is

restricted to 07/2007 - 06/2019.

The available sample overlaps with the Great Recession with periods of extreme fi-

nancial turbulence (between 07/2008 and 06/2009). Additionally, the ZLB constraint

binds between 01/2009 and 11/2015. Given the extended sample size, I can check the

robustness of the results by dropping these periods from the sample in the main text.

However, given that the data on forecast errors underlying credit spread is available only

between 07/2007 - 06/2019, I control for these episodes by modifying equation (36) stated

below

xt+h = αh + ψh(L)zt + βhft + γhftEBPt−1 + εt+h. (67)

as

xt+h = αh + ψh(L)zt + β1
hft(1− ZLBt) + γ1

hftSentt(1− ZLBt)

+ β2
hftZLBt + γ2

hftSenttZLBt + εt+h. (68)
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Here, ZLBt is a dummy variable that equals 1 in periods where the zero lower bound on

the nominal interest rate binds. The dummy variable takes the value 1 between (01/2009

- 11/2015). The coefficients β1
h and γ1

h now quantify the magnitude of the direct and

interaction effects after controlling for the periods over which the ZLB binds and controls

for most of the sample with periods of financial turbulence.

I estimate equation (68) using the empirically constructed measure of sentiment fol-

lowing Maxted (2023) and the lagged value of the EBP using the baseline measure of

monetary policy surprises. Figure 11 plots these results.
Response of Industrial Production

Figure 11: Interaction effect of a one-unit surprise monetary policy tightening on log(IP ) with
different measures of sentiment using the baseline measure of monetary policy surprises. Blue
line: Interaction effect when sentiment is measured using a lagged value of EBP . Black line:
Interaction effect when sentiment is measured using the empirical measure following Maxted
(2023). Impulse responses constructed assuming a 1-standard deviation-positive value of the
relevant measure of sentiment. Shaded areas denote 90% confidence bands (Newey-West).

Figure 11 shows that both sentiment measures generate similar interaction effects after

controlling for periods over which the ZLB binds and controls for most of the sample with

periods of financial turbulence. An important point to note here is that the empirically

constructed measure of sentiment is 0 when θ is 0. I use a similar intuition in the main

text when using the lagged value of the EBP . Figure 11 thus confirms that the lagged

value of the EBP is indeed a good measure of the underlying sentiment. Moreover, given

data availability, I use this measure for the empirical analysis in the main text.

52



E Diagnostic expectations in a canonical three equation New Keynesian Model

To derive the predictions under diagnosticity in belief formation I use the model and

notation in L’Huillier et al. (Forthcoming). The framework in L’Huillier et al. (Forth-

coming) introduce nominal rigidities via quadratic adjustment costs in terms of the final

goods consistent with Rotemberg (1982). The log-linearized equilibrium conditions are

given by

ŷt = Et[ŷt+1]+θ[Etŷt+1−Et−1ŷt+1]−
(
ît− [Etπ̂t+1 +θ(Etπ̂t+1−Et−1π̂t+1)]

)
+θ[πt−Et−1πt]

(69)

πt = β[Etπ̂t+1 + θ(Etπ̂t+1 − Et−1π̂t+1)] + κ(ŷt − ât) (70)

ît = φππ̂t + φx(ŷt − ât) + εit + εfgt−1 (71)

ât = ρaât−1 + εxt . (72)

The framework in L’Huillier et al. (Forthcoming) does not include shocks to forward

guidance and surprises to monetary policy consist of a shock to the nominal interest

rate εit. Note that setting θ = 0, in equations 69 and 70, reverts the model back to the

environment with rational expectations. I guess a solution for output (ŷt) and inflation

(π̂t) of the form

ŷt = P y,θ
1 εfgt−1 + P y,θ

2 at−1 + P y,θ
3 εit + P y,θ

4 εfgt + P y,θ
5 εxt (73)

and

π̂t = P π,θ
1 εfgt−1 + P π,θ

2 at−1 + P π,θ
3 εit + P π,θ

4 εfgt + P π,θ
5 εxt . (74)

Following the solution technique outlined in L’Huillier et al. (Forthcoming), the system

of equations in (69-72) is solved using the minimum state variable solution such that

P y,θ
1 = −1

1 + φx + κφπ
; P π,θ

1 = κP y,θ
1 (75)

53



P y,θ
2 = ρa(1− βρa)φx + κρa(φπ − ρa)

(1− βρa)(1 + φx − ρa) + κ(φπ − ρa)
; P π,θ

2 = κP y,θ
2

1− βρa
− κρa

1− βρa
(76)

P y,θ
3 = −1

1 + φx + κ(φπ − θ)
; P π,θ

3 = κP y,θ
3 (77)

P y,θ
4 = (1 + θ)P y,θ

1 + (1 + θ)P π,θ
1 [1− β(φπ − θ)]

1 + φx + κ(φπ − θ)
;P π,θ

4 = βP π,θ
1 (1 + θ) + κP y,θ

4 (78)

P y,θ
5 = (1 + θ)P y,θ

2 + (1 + θ)P π,θ
2 [1− β(φπ − θ)] + κ(φπ − θ)

1 + φx + κ(φπ − θ)
;P π,θ

5 = βP π,θ
2 (1+θ)+κ(P y,θ

5 −1)

(79)

By setting θ = 0, we recover the coefficients for solution in the model with rational

expectations

P y,0
1 = −1

1 + φx + κφπ
; P π,0

1 = κP y,0
1 (80)

P y,0
2 = ρa(1− βρa)φx + κρa(φπ − ρa)

(1− βρa)(1 + φx − ρa) + κ(φπ − ρa)
; P π,0

2 = κP y,0
2

1− βρa
− κρa

1− βρa
(81)

P y,0
3 = −1

1 + φx + κφπ
; P π,0

3 = κP y,0
3 (82)

P y,0
4 =

(
P y,0

1 + P π,0
1 − P π,0

1 φπβ
)

1 + φx + κφπ
;P π,0

4 = βP π,0
1 + κP y,0

4 (83)

P y,0
5 =

(
P y,0

2 + P π,0
2 − P π,0

2 φπβ + κφπ

)
1 + φx + κφπ

;P π,0
5 = βP π,0

2 + κ(P y,0
5 − 1) (84)

Note, that the coefficients quantifying the role of state variables in the models with

diagnostic agents and rational expectations are identical, with P y,θ
1 = P y,0

1 , P y,θ
2 = P y,0

2 ,

P π,θ
1 = P π,0

1 , and P π,θ
2 = P π,0

2 as evident from equations 75, 80, 76, and 81 respectively.

Now, to understand the impact of diagnosticity, on macroeconomic variables, consider

the impact of a shock to forward guidance in period t, εfgt on output gap ŷt. The model

under rational expectations predicts, on impact, the response of output is

P y,0
4 =

(
P x,0

1 + P π,0
1 − P π,0

1 φπβ
)

1 + φx + κφπ
(85)
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whereas in an environment with diagnostic agents,

P y,θ
4 = (1 + θ)P y,θ

1 + (1 + θ)P π,θ
1 [1− β(φπ − θ)]

1 + φx + κ(φπ − θ)
. (86)

Note, that P y,θ
1 = P y,0

1 and P π,θ
1 = P π,0

1 from equations 75 and 80. Evaluating the

incremental contribution owing to diagnosticity-driven overreaction

P y,θ
4 − P y,0

4 =
(1 + θ)

(
P y,θ

1 + P π,θ
1 − P π,θ

1 (φπ − θ)β
)

1 + φx + κ(φπ − θ)
−

(
P y,0

1 + P π,0
1 − P π,0

1 φπβ
)

1 + φx + κφπ

=
(1 + θ)

(
P y,θ

1 + P π,θ
1 − P π,θ

1 (φπ − θ)β
)

1 + φx + κ(φπ − θ)
−

(
P y,θ

1 + P π,θ
1 − P π,θ

1 φπβ
)

1 + φx + κφπ

=

(
P y,θ

1 + P π,θ
1 − P π,θ

1 (φπ − θ)β
)

1 + φx + κ(φπ − θ)
−

(
P y,θ

1 + P π,θ
1 − P π,θ

1 φπβ
)

1 + φx + κφπ

+ θ

(
P y,θ

1 + P π,θ
1 − P π,θ

1 (φπ − θ)β
)

1 + φx + κ(φπ − θ)

=
(
P y,θ

1 + P π,θ
1 − P π,θ

1 φπβ
)[ 1

1 + φx + κ(φπ − θ)
− 1

1 + φx + κφπ

]
+ θβP π,θ

1
1 + φx + κ(φπ − θ)

+ θ

(
P y,θ

1 + P π,θ
1 − P π,θ

1 (φπ − θ)β
)

1 + φx + κ(φπ − θ)

=
(
P y,θ

1 +P π,θ
1 −P

π,θ
1 φπβ

)[
κθ(

1 + φx + κ(φπ − θ)
)(

1 + φx + κφπ
)]+θ

(
P y,θ

1 + P π,θ
1 − P π,θ

1 (φπ − θ)β
)

1 + φx + κ(φπ − θ)

+ θβP π,θ
1

1 + φx + κ(φπ − θ)

=
(
P y,θ

1 + P π,θ
1 − P π,θ

1 φπβ
)[

κθ(
1 + φx + κ(φπ − θ)

)(
1 + φx + κφπ

)]+
θ
[
P y,θ

1 + P π,θ
1 − P π,θ

1 (φπ − θ)β + βP π,θ
1

1 + φx + κ(φπ − θ)

]
(87)
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Plugging in P π,θ
1 = κP y,θ

1 from equations 75 and 80.

P y,θ
4 − P y,0

4 =
(
P y,θ

1 + κP y,θ
1 − κP y,θ

1 φπβ
)[

κθ(
1 + φx + κ(φπ − θ)

)(
1 + φx + κφπ

)]+
θ
[
P y,θ

1 + κP y,θ
1 − κP y,θ

1 (φπ − θ)β + βκP y,θ
1

1 + φx + κ(φπ − θ)

]

P y,θ
4 −P

y,0
4 = P y,θ

1

[
κθ[1 + κ− κφπβ](

1 + φx + κ(φπ − θ)
)(

1 + φx + κφπ
)]+θP y,θ

1

[1 + κ− κ(φπ − θ)β + βκ

1 + φx + κ(φπ − θ)

]

P y,θ
4 −P

y,0
4 = P y,θ

1

[
κθ[1 + κ− κφπβ](

1 + φx + κ(φπ − θ)
)(

1 + φx + κφπ
)]+θP y,θ

1

[1 + κ− βκφπ + βκθ + βκ

1 + φx + κ(φπ − θ)

]

P y,θ
4 −P

y,0
4 = θP y,θ

1

[
κ[1 + κ(1− φπβ)](

1 + φx + κ(φπ − θ)
)(

1 + φx + κφπ
)]+θP y,θ

1

[1 + κ(1− φπβ) + βκθ + βκ

1 + φx + κ(φπ − θ)

]
.

(88)

The overreaction in output due to diagnosticity in belief formation in the canonical New

Keynesian model is therefore given by

P y,θ
4 −P

y,0
4 = θP y,θ

1

[
κ[1 + κ(1− φπβ)](

1 + φx + κ(φπ − θ)
)(

1 + φx + κφπ
)]+θP y,θ

1

[1 + κ(1− φπβ) + βκθ + βκ

1 + φx + κ(φπ − θ)

]

P y,θ
4 −P

y,0
4 = θP y,θ

1

[
κ[1 + κ(1− φπβ)](

1 + φx + κ(φπ − θ)
)(

1 + φx + κφπ
)+1 + κ(1− φπβ) + βκθ + βκ

1 + φx + κ(φπ − θ)

]
.

(89)

If θ is set to zero, the sentiment-driven overreaction component is eliminated with P y,θ
4 −

P y,0
4 = 0. P y,θ

1 = −1
1+φx+κφπ < 0 given that the parameters are positive. Allowing diag-

nosticity in the New Keynesian model thus generates a similar additional component as

generated in the model presented in Section 2. Finally, following equation (89) P y,θ
4 , can
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be expressed as

P y,θ
4 = P y,0

4︸ ︷︷ ︸
Direct Effect

+θP y,θ
1

[
κ[1 + κ(1− φπβ)](

1 + φx + κ(φπ − θ)
)(

1 + φx + κφπ
)]+ θP y,θ

1

[1 + κ(1− φπβ) + βκθ + βκ

1 + φx + κ(φπ − θ)

]
︸ ︷︷ ︸

Interaction Effect

(90)

equation (90) thus generates theoretically similar predictions for real activity as demon-

strated in Section 2.

F Other measures of economic activity

Response of Unemployment Rate

Figure 12: Left column: Direct effect of a one-unit surprise monetary policy tightening on the
unemployment rate. Right column: Interaction effect of a one-unit surprise monetary policy
tightening on the unemployment rate. Shaded areas denote 90% confidence bands (Newey-
West).
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G Response of CPI and 1 year T-Bill rate to a 1-unit increase in the baseline

measure of monetary policy surprise

Response of CPI

Figure 13: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(CPI). Right column: Interaction effect of a one-unit surprise monetary policy tightening
on log(CPI). Shaded areas denote 90% confidence bands (Newey-West). A one-unit surprise
monetary policy tightening corresponds to approximately a 10.5 basis point increase in 4 quarter
ahead Euro-dollar future. The interaction effect in the right column is plotted assuming a 1-unit
positive value of credit-market sentiment in the initial period.

Response of 1 year T-bill market yield

Figure 14: Left column: Direct effect of a one-unit surprise monetary policy tightening on the
one year Treasury security. Right column: Interaction effect of a one-unit surprise monetary
policy tightening on the one year Treasury security. Shaded areas denote 90% confidence bands
(Newey-West). A one-unit surprise monetary policy tightening corresponds to approximately
a 10.5 basis point increase in 4 quarter ahead Euro-dollar future. The interaction effect in the
right column is plotted assuming a 1-unit positive value of credit-market sentiment in the initial
period.
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H Other robustness checks

Response of Excess Bond Premium

Figure 15: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(CPI). Right column: Interaction effect of a one-unit surprise monetary policy tightening
on log(CPI). Shaded areas denote 90% confidence bands (Newey-West).

Response of CPI

Figure 16: Left column: Direct effect of a one-unit surprise monetary policy tightening on
log(CPI). Right column: Interaction effect of a one-unit surprise monetary policy tightening
on log(CPI). Shaded areas denote 90% confidence bands (Newey-West).
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Response of 1 year T-bill market yield

Figure 17: Left column: Direct effect of a one-unit surprise monetary policy tightening on the
one year Treasury security. Right column: Interaction effect of a one-unit surprise monetary
policy tightening on the one year Treasury security. Shaded areas denote 90% confidence bands
(Newey-West).
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