Investment Slumps during Financial Crises: Role of Financial Constraints

by

Alexandros Fakos, Plutarchos Sakellaris, and Tiago Tavares

Discussion

A. Summary

- Compelling study of firm-level financial frictions driving disinvestment and recession in Greece
 - Establishes empirically that:

Fundamentals cannot explain large portion of post-crisis investment decline; Firms with higher external fin. dependence invest significantly less during crisis; as do firms with higher long-term leverage during 2012-14.

- Paper calibrates:
 - > Khan-Thomas type RBC model with financial frictions, modified to incorporate
 - > asymmetric variant of Cooper-Haltiwanger capital adjustment costs
- Adding credit shocks allows the model to closely approximate investment slump during the crisis; benchmark model estimates are too low.

B. Impact of economic uncertainty

Notes: The index reflects scaled monthly counts of articles in four Greek newspapers. The series is normalized to a mean of 100 from 1/1998 to 12/2017. For details, see Hardouvelis, Karalas, Karanastasis, Samartzis, 2018, SSRN: <u>https://ssrn.com/abstract=3155172</u>, "Political, Economic and Economic Policy Uncertainty in Greece". Data available at <u>www.PolicyUncertainty.com</u> and at <u>www.hardouvelis.gr</u>.

Source: Hardouvelis et. al. (2018); available at: www.policyuncertainty.com

B. Impact of economic uncertainty

- Evidence of rising uncertainty \rightarrow sales growth (<u>fig. 4</u>) and profits (<u>tab. 5</u>)
- Investment response to positive demand and profitability shocks can dampen significantly when uncertainty is high (Bloom et al, 07)
 - increased incidence of investment inactivity
 - reduced prevalence of investment spikes
 - rationalizes estimated reduction in probability of investment
- Appears natural to assume k-adj. costs same *relative to <u>potentially</u> <u>changing</u> projections of future profits? Equivalently, test robustness against E_t^{(c)}(\pi_{t+h}/\pi_t) \neq E_t^{(nc)}(\pi_{t+h}/\pi_t).*
 - Such an alternative assumption, when reflecting greater uncertainty, may increase stickiness of investment irrespective of change in financial constraints

C. Leverage, roll-over risk and weak banks

- Firm-level frictions + banking problems \rightarrow investment slumps
- What happened to firm leverage during the crisis?
 - Does decrease in LT leverage represent a composition effect?
 - How significant is the drop in LT leverage? In most sectors, it appears to be a reversal of spikes occurring in 2008-09, reverting back to levels in preceding years.
- Paper aggregates over key characteristics of firms and their leverage
 relationship between roll-over risk and: (i) debt overhang, (ii) firm size and age
- Kalemli-Ozcan et. al. (KLM, 18) study euro-area firms:
 - > Firms with more ST debt invest more pre-crisis & reduce investment more ex-post
 - Rollover impact exaggerated by weakness of main bank(s)—esp. in periphery
- KLM and Dinlersoz et. al. (18) smaller, younger, privately held firms in more exposed to roll-over risk (euro area + US) and weak banks (euro area)

D. Underlying theoretical model and policy

- Financial sector exists "outside the model" in Khan-Thomas (i.e., financial shocks are exogenous)
 - endogenous TFP shocks presented as major factor, albeit, arguable given persistence decline in employment, even in the US
 - > Data makes KT perhaps persuasive for US (Gertler-Gilchrist, QJE94; JEP18)
- But, not for small open economies ightarrow endogenous default and exit
 - Paper endogenizes exit, but not fully clear what role endogeneity plays, and what the underlying mechanism is (e.g., overborrowing due to limited enforcement?)
 - Recent models feature overborrowing by all banks and firms (Bianchi & Mendoza, 2018)
- Explicitly modeling leverage and debt maturity decisions opens the door to richer policy analysis, both monetary and macro-prudential

E. Aggregation and capital adjustment costs

• Plant vs. Firm Level Investment Stickiness and Adjustment Costs

- Cooper-Haltiwanger & Bloom et. al. both emphasize that (S,s) investment behavior and associated moment properties of investment appear less significant at firm level
- While their analyses are conducted at the plant-level, this paper's is at the firm level
- > How persuasive is the non-convex adjustment component and the (S,s) rule?

References

- Fakos, Sakellaris, Tavares (2018): Investment Slumps during Financial Crises
- Gertler, Gilchrist (1994): QJE
- Cooper, Haltiwanger (2006): RES
- Bloom, Bond, van Reenan (2007): RES
- Khan, Thomas (2013): JPE
- Bianchi, Mendoza (2018): JPE
- Dinlersoz et. al. (2018): NBER WP 25226
- Gertler, Gilchrist (2018): JEP
- Kalemli-Ozcan et. al. (2018): CEPR 13336

Annex. Increasing dispersion of sales growth and profitability of Greek firms

Sector	Period	$SD(\omega)$	$SD(\nu)$
Food and beverages	Pre-crisis	0.979	0.633
	During crisis	1.058	0.647
Apparel and lather	Pre-crisis	1.173	0.599
	During crisis	1.145	0.638
Paper	Pre-crisis	0.847	0.471
	During crisis	0.882	0.497
Chemicals	Pre-crisis	0.968	0.526
	During crisis	0.955	0.564
Plastic and rubber	Pre-crisis	0.847	0.557
	During crisis	0.967	0.594
Non-metal minerals	Pre-crisis	0.967	0.739
	During crisis	1.116	0.857
Metal products	Pre-crisis	0.847	0.651
	During crisis	1.066	0.802
MachEq vehicles	Pre-crisis	0.951	0.615
	During crisis	1.072	0.744
Whole manufacturing	Pre-crisis	1.032	0.626
	During crisis	1.113	0.698

Source: Fakos et. al. (2018)