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Abstract

This article studies a principal-agent problem with flexible information acquisition.

The agent has to choose between investing in an innovative asset about which costly

information can be acquired or in a conventional asset about which there is enough

historical data and no information is acquired. In the first-best problem, the principal

acquires information about the entire distribution of cash flow from the innovative

asset. Contrarily, in the second-best problem, less information is acquired about the

left tail of the distribution compared to the first-best. The optimal contract of the agent

when the innovative asset is chosen pays zero wage below a cutoff value of cash flow

and an increasing wage above the cutoff. As a consequence, the information intensity

is zero for these low cash flows where no wage is paid. This results in investment in

even those assets that have a thick left tail and thus a high likelihood of failure ex post.

Our paper explains why agents make investments without learning about the left tail

of the distribution which in turn may lead to a financial crisis.
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1 Introduction

A financial crisis is often followed by a technological or a financial innovation (Kindleberger

(1978), Goldfarb and Kirsch (2019)). Recent examples include the dot-com bubble and the

global financial crisis of 2008 which involved innovative financial products such as collater-

alized debt obligations (CDOs). One of the explanations for why a financial crisis occurs

is that economic agents are irrational and ignore the tail risks in their investment choices

because of various biases such as the availability heuristic (Gennaioli et al. (2012), Barberis

(2013)) or “blindness to outliers” (Payzan-LeNestour and Woodford (2022)).

However, the financial industry is known to hire talented individuals (Bond and Glode

(2014), Glode and Lowery (2016)). Therefore it is surprising that these talented individuals

make systematic mistakes, that too in an environment where there are strong incentives to

make large profits if their portfolios perform well. In this paper, we try to answer this puzzle

and provide an explanation for why rational agents may choose to learn less about the left

tail than the right tail of the distribution of investments they make. As a consequence, they

end up investing in even those assets that have a fat left tail and therefore a high likelihood

of failure ex post.

We build a principal-agent model with flexible information acquisition. The principal

(“she”) wants to make an investment and has two choices, an asset A with unknown returns

about which costly information can be acquired to learn about its distribution or another

asset B about which there is nothing to learn. However, the principal does not have the

skill to acquire the information about asset A, so she hires an agent (“he”) to do so. There

are several interpretations of assets A and B. Asset A can be considered an investment in

a firm with new technology such as information technology or artificial intelligence, or in a

financially innovative product such as CDOs. Asset B can be thought of as old-technology

firms and conventional loans about which there is enough historical data and hence there is

much less need to acquire costly information, or as safe securities such as government bonds

with a very low probability of default.

Since an agent can choose both the intensity and nature of information acquisition,

we use the approach of flexible information acquisition to model our information structure

(see Yang and Zeng (2019), Yang (2020)).1 Flexible information acquisition implies that

the agent can choose any possible information structure which allows us to model state-

contingent attention allocation. Since information acquisition is costly, the contract offered

to the agent determines how much effort he exerts in learning about different states. Thus

our approach allows us to endogenously model differential attention allocation to different

1In traditional models of information acquisition the information structure is exogenously given. See, for
example, Lambert (1986), Gromb and Martimort (2007)Veldkamp (2023), among others.
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states by the agent and the optimal contract that the principal offers. We model information

cost as the reduction in Shannon’s entropy of a random variable (Sims (2003)).

The optimal contract of the agent is contingent on the asset chosen by the agent and

the cash flow generated by it. The contract and the information structure the agent chooses

are endogenously determined in the model. The key friction in our model is that the nature

and intensity of information acquired by the agent is unobservable and that the agent has

limited liability.

In the benchmark (first-best) case, the principal herself exerts effort to acquire informa-

tion about asset A. In the benchmark information structure, the principal acquires infor-

mation about all values in the support of the distribution of cash flows from asset A. This

is because she fully internalizes the profit (or loss) from each possible outcome of cash flow

generated by asset A.

However, if the agent acquires the information (second-best), then less information is

acquired about the left side of the distribution of asset A compared to the first-best. In the

optimal contract, if the agent chooses asset A, then for low cash flows the agent is paid zero.

If the cash flow is above a certain cutoff, then the agent is paid an increasing concave wage.

The expected wage paid if the agent chooses asset B is positive.

The intuition for the shape of the optimal contract offered by the principal and the

lack of information acquisition by the agent about the left side of the distribution is as

follows. To incentivize the agent to acquire information about asset A and then choose the

right project conditional on that information, the agent should be punished adequately if he

chooses asset A and the return is very low. This punishment should be large enough relative

to the expected payoff from choosing asset B. However, because of limited liability, the best

the principal can do is give the agent zero if low outcomes occur, as opposed to giving him

a negative wage. Given the flat nature of the contract at low returns from the asset A, the

agent has no incentive to exert effort to acquire information to distinguish between these low

outcomes. Hence the information intensity is zero in the region where the wage is zero. The

consequence of this is that the posterior distributions after observing the signals are very

close to the prior on the left side of the distribution, but much apart from the prior on the

right side of the distribution. In other words, the agent learns very little about the left side

of the distribution.

Efficiency requires that asset A be chosen with a higher likelihood if its cash flow is higher.

Therefore, in the optimal contract, after a certain cutoff value of cash flow from asset A, the

wage increases as cash flow increases. This increasing part of the wage incentivizes the agent

to choose an information structure such that asset A is chosen with a higher probability if

the true cash flow is higher. Thus, the increasing wage ensures efficiency in asset allocation.
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The principal will also desire efficient allocation only if her profit also increases with the cash

flow from asset A. We find that this is also true in equilibrium. In the optimal contract,

the increasing part of wage from asset A is concave with a slope less than one which implies

that the profit of principal increases with cash flow. This increasing profit of the principal

together with a higher likelihood of asset A being chosen when cash flow is higher is desirable

to the principal.

The key implication of our result that less information is acquired about the left tail

of the distribution is that investors fail to understand the thickness of the left tail, hence

they may invest in an asset even if it has a thick left tail. These investments have a high

likelihood of failing ex post. Several recent papers have highlighted the role of neglecting

the crash risk before a financial crisis. Baron and Xiong (2017) show that shareholders in

banks do not price the crash risk during credit expansions. Jordà et al. (2021) document

that higher bank capital does not decrease the likelihood of a banking crisis, and interpret

this result as evidence of optimism and neglect of crash risk before a crisis. Fahlenbrach

et al. (2018) show that stocks of banks with high loan growth underperform the stock of

banks with low loan growth. Cheng et al. (2014) provide evidence that mid-level managers

in the securitization business were unaware of problems in the housing market. All these

results can be explained by economic agents making decisions after receiving high signals

drawn from an information structure that does not focus on learning about the thickness of

the left tail of the distribution.

While our model fits the setting of the principal-agent problem within an investment

firm, it can equally well be applied to a setting where the CEO is considered the agent and

the shareholders are the principal. Suppose the CEO has to choose between making a new

investment such as setting up a new factory or acquiring a new firm and retaining cash.

This investment can be thought of as an investment in asset A, while retaining cash can be

thought of as an investment in asset B. A large literature has established that CEOs can be

overconfident (Malmendier and Tate (2005)).2 However, this appearance of overconfidence

could merely be a consequence of the CEOs choosing not to learn about the left side of the

distribution of their investment.

1.1 Literature Review

Our paper contributes to several strands of literature. First, we contribute to the large liter-

ature on financial crisis. Several papers have highlighted that if the economic environment

changes because of the arrival of innovative technologies or financial products, then there

may be a crisis because of hubris, behavioural biases and neglect of crash risk (Kindleberger

2For a survey of literature on CEO overconfidence, see Malmendier and Tate (2015).
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(1978), Shiller (2000), Barberis (2013), Gennaioli et al. (2012)) or “this time is different”

syndrome (Reinhart (2009)). Thakor (2012), which provides an alternative theory, builds a

model where banks have the incentive to innovate to earn positive profits in a competitive

market. However, innovation creates a risk that the investors may disagree with the banks

at an interim stage and withdraw funding, thereby leading to a crisis.3 The novelty of our

paper is that our model generates endogenous beliefs of rational agents that ex post appear

to be irrational as has been highlighted by several papers on financial crises.

We also add to the relatively new literature on contracting with flexible information

acquisition (Yang and Zeng (2019), Yang (2020)).4 In Yang (2020), a seller needs to carve

out a security from an existing asset for liquidity purposes and the buyer acquires information

flexibly. The optimal contract is a debt contract as it is the most information-insensitive

contract and reduces the adverse selection problem.

Our paper is closest to Yang and Zeng (2019) which studies a security design problem in

a production economy where an entrepreneur needs financing for a project from an investor

who acquires information. If the ex ante prospects of the project is good, then information

acquisition is not very useful and the optimal security is a debt contract, a security that

disincentivizes information acquisition. However, if the ex ante project profitability is not

high, then information acquisition is valuable and the optimal security needs to incentivize

efficient financing decisions. The optimal contract in this case is a combination of debt

and equity. The shape of the equity component in their paper is similar to that in ours

and plays the role of incentivizing information acquisition to increase efficiency. The key

difference between the investor’s contract in their model and the agent’s contract in our

model is that when the investment results in a low cash flow, then the entire output goes

to the investor because of the debt component of the contract; however, the exact opposite

happens in the agent’s contract who receives nothing if the cash flow from the investment in

asset A is low. The reason for this difference is as follows. In our model, the agent is paid

an endogenous positive wage if asset B is chosen. Hence he must be given very low wages at

low values of cash flow from asset A to incentivize him to acquire information. Contrarily,

the outside option of the investor is zero in Yang and Zeng (2019), hence there need not be

any punishment to incentivize information acquisition.

Another class of papers that has studied contracting within financial institutions is also

connected. Some of these papers have highlighted that competition to hire talented employ-

3For another model on innovation and crises, see Biais et al. (2009).
4Thus our paper also adds to the literature on contracting with an agent for information acquisition.

See, Demski and Sappington (1987), Lambert (1986),Gromb and Martimort (2007), Häfner and Taylor
(2022), for example. In these papers, the information structure is exogenously given, while in our paper it
is endogenously derived.
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ees can lead to excessive risk-taking (Bénabou and Tirole (2016), Acharya et al. (2016)).

Heider and Inderst (2012) build a model in which effort is required to prospect for loans. If

competition increases in the loan market, then soft information is ignored while sanctioning

the loans.5 In another interesting paper Bouvard and Lee (2020), risk management is mod-

eled as information acquisition, which requires time, about a trading opportunity. However,

since banks preemptively compete for the same trading opportunity, there is a race to the

bottom and a socially inefficient amount of time is spent on information acquisition. They do

not solve for optimal contracts though. In our model, competition for talent or investment

opportunities has no role, and yet socially inefficient information acquisition and project

allocation takes place because of moral hazard and limited liability.

The rest of the paper is organized as follows. In section 2, we build the principal-agent

model. Section 3 solves for the optimal first best contract. In section 4, we solve the second-

best contract and highlight the inefficiencies. Section 5 shows some comparative statics and

section 6 concludes.

2 Model

In our model, there are two risk-neutral players, a principal (“she”) and an agent (“he”),

and two dates, 0 and 1. The principal has capital I that can be invested at t = 0 in one

of two assets, asset A and asset B. If the investment is made in asset A, then at t = 1, a

nonnegative verifiable random cashflow θ is produced with a distribution F that admits a

probability distribution function f over its support Θ = [θ, θ̄]. If the investment is made in

the asset B, it produces a cash flow given by the number θB ∈ R+. We make the following

assumption to ensure that the asset allocation decision is non-trivial.

Assumption 1. θ ≥ 0, θB ∈ (θ, θ̄)

At t = 0, the principal offers a contract to the agent that specifies the agent’s payout

based on the agent’s asset choice and the cash flow realized. That is, the principal commits

to a payment rule given by the pair (w, w̄) where w : [θ, θ̄] → R+ is wage when the agent

chooses asset A and w̄ is the wage when he chooses asset B. We assume limited liability

for both the principal and the agent, i.e., the wages satisfy the conditions 0 ≤ w̄ ≤ θB and

0 ≤ w(θ) ≤ θ.

If the agent accepts the contract, the agent first acquires information about asset A. We

assume that the agent needs to exert costly effort to acquire information, which is measured

by entropy reduction (Sims (2003)). The cost per unit of reduction in entropy is denoted

5Agarwal and Ben-David (2018) and Cole et al. (2015) provide evidence that if volume-based incentives
are given to loans officers then there is less reliance on soft information and loan performance decreases.
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by µ > 0. The information structure is flexible (Yang (2020), Yang and Zeng (2019)) and

is discussed in detail later. After acquiring information and updating his beliefs, the agent

makes the binary decision (a ∈ {0, 1}) of investing in the asset A (a = 1) or asset B (a = 0).

After the agent chooses the asset, the asset return is realized, and the contracted amount

is paid to the agent. The underlying assumption here is that the principal does not have

expertise in acquiring information about asset A, hence she hires the agent to do so.

Asset A can be interpreted as a new technology or innovative financial product about

which very little is known and hence costly information needs to be acquired about it. On the

other hand, asset B can be thought of as a conventional asset about which there is enough

historical data and little to learn about, or it can be thought of as a safe asset such as

government bonds. The key point about asset B is not that it has a degenerate distribution

but that no information needs to be acquired about it to learn more about its distribution.

We can assume both the cash flow from asset B and the wage paid when it is chosen by the

agent to be random variables and our result will still hold.6

Our model fits several economic situations. For example:

(i.) A CEO (principal) is trying to incentivize a trading desk to choose to invest between

innovative products such as CDOs (asset A) or conventional loans (asset B).

(ii.) The head of a hedge fund or a mutual fund asks an investment manager to choose

to invest in new technology firms such as IT firms or AI firms versus old technology

firms.

(iii.) A CEO asks a trader to choose between hedging an asset on its portfolio or not. The

unhedged asset can be thought of as asset A while the hedged asset can be thought of

as asset B.

(iv.) The owners of a firm (principal) ask the CEO (agent) to choose between investing in

a new factory (or acquiring a new firm) versus retaining cash.

2.1 Flexible Information Structure

We model flexible information acquisition following the work of Woodford (2008), Yang

(2020) and Yang and Zeng (2019). A flexible information structure allows the agent to

choose any information structure and the associated cost is µ times the expected entropy

reduction.

Since the information acquisition is flexible, the agent can acquire information about

asset A by arranging to receive a signal, which could be correlated arbitrarily to the un-

derlying return θ. Specifically, under the information structure π, which is chosen by the

6See section 5 for details.
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agent, the signal x is drawn from some set X, according to a conditional probability π(x|θ)
chosen by the agent. We need not impose any restrictions on X. Note that π : Θ → ∆X.

∆X denotes the set of all probability distributions over X. However, since the action, a, of

the agent is binary, where a = 1 implies investing in asset A and a = 0 implies investing

in asset B, the agent will always choose a binary-signal information structure. We denote

this signal by s ∈ {0, 1}. Any finer information structure will result in an unnecessary ex-

pense on information acquisition without adding any value to decision-making. This result

is now standard in literature (Yang (2020), Yang and Zeng (2019)), hence we do not derive

it. Therefore, the information structure can be characterized by a measurable function of θ,

m(·) : Θ → [0, 1], which is the probability of seeing the signal 1 if the cashflow realized from

the risky project is going to be θ. The agent takes the action a = 1 if the signal takes the

value 1, else she takes the action a = 0. Therefore, we restrict m to belong to the set of all

measurable functions from Θ to [0, 1] given by M. We refer to m(·) as the signal structure

or the information structure.

The key question we are trying to answer in our paper is why economic agents are

unaware of the left side of the distribution. To answer this question we need to model our

information structure in such a way that the agent can choose how much it wants to learn

about each possible state, i.e., the information structure needs to be completely flexible. The

main advantage of modeling information structure the way we have done it is that it allows

us to simultaneously solve for a flexible information structure and the corresponding contract

in a principal-agent setting. In this setting, the absolute value of the first-order derivative

of the function m(·), i.e., |dm(θ)
dθ

|, measures the intensity of information acquisition around θ

(Yang (2020)). Thus this term allows us to capture the intensity of endogenous information

acquisition. A larger |dm(θ)
dθ

| implies that the agent acquires more information around θ,

and hence, the more her decision changes with a change in θ. The observation of the signal

reduces the uncertainty in the random variable θ, where the uncertainty of a random variable

is measured by Shannon’s entropy H(·). The cost associated with a signal structure, m(·), is
proportional to the expected reduction in uncertainty after observing the signal realization.

The difference between the expected posterior entropy and the prior entropy is given by

I(m(·)) = E[g(m(θ))]− g(E[m(θ)]),

where g(x) = xln(x) + (1− x)ln(1− x), and the expectation is taken under the probability

measure F . Given the per unit cost of information acquisition, µ, the total cost associated

with a signal structure m(·) is
c(m(·)) = µI(m(·)).
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3 First Best

In this section, we analyze the first-best signal structure in which the principal himself

acquires the information and makes the asset allocation decision. We denote the utility of

the principal if he takes action a and the asset A returns θ by v(a, θ). The ex post gain in

payoff from choosing asset A over B is given by ∆v(θ) = v(1, θ) − v(0, θ) = θ − θB. In the

first best, the principal’s problem is to choose the optimal information structure m ∈ M
that maximizes the principal’s payoff. It is given as follows:

max
m∈M

V (m) = E[m(θ)∆v(θ)] + θB − c(m)

The characterization of the optimalm is given by Proposition 1 in Yang and Zeng (2019),

which we restate here.

Proposition 1. Let m ∈ M be an optimal strategy and p1 = E[m(θ)] be the corresponding

unconditional probability of taking action a = 1. Then,

(i) the optimal strategy is unique;

(ii) there are three possibilities for the optimal information structure:

(a) p1 = 0 (i.e., m(θ) = 0 almost surely) if and only if

E[eµ−1.∆v(θ)] ≤ 1; (1)

(b) p1 = 1 (i.e., m(θ) = 1 almost surely) if and only if

E[e−µ−1.∆v(θ)] ≤ 1; (2)

(c) p1 ∈ (0, 1) if and only if E[eµ−1.∆v(θ)] > 1 and E[E[e−µ−1.∆v(θ)] ≤ 1] > 1, in which

case the optimal information structure m(θ) is given by equation

∆v(θ) = µ · [g′(m(θ))− g′(p1)]. (3)

The proposition first says that optimal information structure is unique. This is because

the functional V (m(·)) is concave in m(·). Second, the proposition gives three cases for

information acquisition and investment choice. In case (a), the principal does not acquire

information and chooses asset B. This will happen if θB is relatively large or if the cost of

information acquisition, µ, is large. In case (b), the principal does not acquire information

and chooses asset A. This will happen if θB is relatively small or if µ is large. The interesting
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case is (c), when the principal acquires information. This will happen if µ is low and the ex

ante profitability of any asset is not extreme relative to the other. The optimal information

structure m(θ) is given by equation 3, which is obtained by equating pointwise marginal

benefit to pointwise marginal cost.

4 Second Best

We now discuss the principal-agent problem which is a sequential game. The principal first

offers the contract (w, w̄) and then the agent chooses the signal structure and makes the

asset allocation decision that maximizes his utility. The agent’s outside option is assumed to

be 0. We first characterize the best response of the agent for a given contract (w, w̄), which

we denote by mw,w̄(·). Let ∆u(θ) denote the ex post gain in payoff from choosing asset A

over B for the agent, i.e.,

∆u(θ) = u(1, θ)− u(0, θ) = w(θ)− w̄.

The problem of the agent can be formally stated as

max
m∈M

U(m) = E[m(θ) ·∆u(θ)] + w̄ − c(m).

There are two points to note here. First, the agent’s problem is a direct adaptation

of the first best problem of the principal. Therefore the best response of the agent can

be characterized by using proposition 1. We obtain mw,w̄(·) by simply replacing ∆v(θ) by

∆u(θ) in proposition 1. The second point is that the principal’s and the agent’s incentives

are perfectly aligned, i.e., they choose the same information structure if

θ − θB = w(θ)− w̄ ∀θ ∈ Θ.

Now the equilibrium is formally defined as follows:

Definition 1. A sequential equilibrium in our model is a combination of the principal’s

optimal wage offer (w∗, w̄∗) and the agent’s optimal information structure mw,w̄(.) for any

wage contract (w, w̄), such that

(i.) the agent’s optimal information structure for a given wage contract (w, w̄) is given by

proposition 1, where ∆v(θ) is replaced by ∆u(θ), and
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(ii.) the principal offers the optimal contract that satisfies

(w∗, w̄∗) ∈ argmax
(w,w̄)

V (w, w̄) = E [mw,w̄(θ){(θ − w(θ))− (θB − w̄)}] + (θB − w̄)

subject to:

w(θ) ∈ [0, θ], w̄ ∈ [0, θB], (LL)

E[mw,w̄(θ)(w(θ)− w̄)] + w̄ − µc(mw,w̄) ≥ 0. (AP )

The constraint (AP ) gives the participation constraint of the agent and the constraint

(LL) is the limited liability constraint of both the principal and the agent. The limited

liability of the agent is an important constraint as without this constraint, much like in

other principal-agent models, the principal can always offer a contract to the agent such

that his optimal signal structure and asset allocation decision is the same as that in the first

best (see below). Also, given that w̄ ≥ 0 and w(θ) ≥ 0 because of the limited liability of the

agent, and that the agent can always choose not to incur any cost on information acquisition,

the minimum utility the agent can get when he is choosing his optimal information structure

is 0. Therefore, for any given contract the participation constraint will always be satisfied,

hence we can ignore this constraint.

4.1 Implementing first-best when the agent does not have limited

liability

Like in other principal-agent models, the first-best can be implemented if the agent does not

have limited liability.

Lemma 1. If the agent does not have limited liability, then the principal can choose a

contract that implements the first-best information structure.

The principal can implement the first-best in the following way. First, recall from the

discussion above that the principal’s and the agent’s incentives are perfectly aligned, i.e.,

they will choose the same information structure if θ − θB = w(θ) − w̄. Now let us denote

the expected utility of the agent in the first best situation by Vf . The principal can offer a

contract to the agent such that

w(θ) = θ − Vf ,

and

w̄ = θB − Vf .

In this wage contract, w(θ)−w̄ = θ−θB; therefore the agent will choose the same information

structure that the principal chooses in the first-best case. Hence this contract gives the agent
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an expected utility of zero and the principal an expected utility of Vf . Therefore this contract

implements the first best.

4.2 Optimal contracts without information acquisition

If the principal does not want the agent to acquire information then, she will offer a wage

w(θ) = 0 and w̄ = 0 to the agent and ask her to choose the asset which has the unconditional

higher expected value. So, if E[θ] > θB, the principal asks the agent to choose the asset A,

else she asks the agent to choose asset B. Since the outside option of the agent is 0, the agent

accepts the contract and invests in the project asked by the principal without information

acquisition.

4.3 Optimal contract with information acquisition

In this section, we characterize the optimal contract when the principal wants the agent

to acquire information. Since the contract induces information acquisition, Proposition 1

implies that the wage contract (w(θ), w̄) must satisfy

E[eµ−1∆u(θ)] > 1,

and

E[e−µ−1∆u(θ)] > 1.

Also, note that if w̄ is equal to 0, then the agent has no incentive to choose the safe

project and will choose the risky project without information acquisition. Similarly, if w(θ)

equals 0 for all θ, then the agent again does not acquire any information and chooses the

safe project. This intuition gives us the following lemma.

Lemma 2. Suppose the contract (w, w̄) induces information acquisition by the agent, then,

w̄ > 0 and w(θ) > 0 for all θ ∈ A, for some A ⊂ Θ that has a strictly positive lebesgue

measure.

Proof: See Appendix.

We now discuss some properties of the optimal response of the agent mw,w̄(·) given the

contract (w, w̄). If the contract induces the agent to acquire information then by proposition

1, mw,w̄ is unique and satisfies a condition analogous to equation 3, i.e.,

w(θ)− w̄ = µ · [g′(m(θ))− g′(E[m(θ)]] (4)
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where

g′(x) = ln(
x

1− x
). (5)

Note that g′(·) is an increasing function. Therefore, for a given contract (w, w̄), if w(θ1) >

w(θ2), then m(θ1) > m(θ2). The result is intuitive as the agent prefers to choose the risky

asset with a higher likelihood for a certain value of realization θ if he expects a higher reward

from the realization of that θ. This also highlights the key trade-off that the principal faces

when designing the optimal contract. The utility of the principal is given by

V (w, w̄) = E[mw,w̄[(θ − w(θ))− (θB − w̄)] + (θB − w̄).

Therefore, for a given w̄, the principal wants the agent to choose asset A with a higher

probability if true θ is higher. However, in order to do so, it must offer the agent a higher

wage w(θ), which in turn reduces the payoff of the principal at the state θ. The principal

balances this trade-off to arrive at the optimal contract.

The agent’s optimal response also satisfies the intuitive property that for a fixed w(θ),

as the reward from choosing the safe project w̄ increases, the likelihood of choosing the risky

project decreases pointwise.

Lemma 3. Suppose the contract (w, w̄) induces information acquisition by the agent, then

∂E[mw,w̄(θ)]

∂w̄
< 0, and

∂mw,w̄(θ)

∂w̄
< 0 a.e. ,

where ∂mw,w̄(θ)

∂w̄
is the partial derivative of mw,w̄(θ) with respect to w̄ for each θ ∈ Θ.

Proof: See Appendix.

Having discussed some of the properties of the agent’s optimal response for a given

contract, we now characterize the optimal contract that the principal will offer. First, we

show that w̄∗ < θB.

Lemma 4. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition

then, w̄∗ < θB.

Proof: See Appendix.

The intuition for this is as follows. If w̄∗ = θB, then the principal’s payoff if the agent

chooses asset B is zero. Therefore, in equilibrium, there is no benefit of inducing the agent

to acquire information. Hence w̄∗ must be less than θB in an equilibrium with information

acquisition.

We discussed above that the key trade-off in designing the optimal w(θ) is that while

the principal wants higher mw,w̄(θ) for higher values of θ, he needs to pay a higher w(θ) for
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this to happen which reduces his profit at that θ. Despite this trade-off, we show that in the

optimal contract that induces information acquisition, w∗(θ) and hence m∗
w,w̄(θ) is weakly

increasing in θ.

Lemma 5. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition

then, w∗ is weakly increasing on Θ a.e..

Proof: See appendix.

This result ensures the efficiency of asset allocation. The principal compensates the

agent more for a higher value of the outcome θ to incentivize him to acquire an efficient

information structure.

Next, we use the variational approach to further characterize the optimal contract. In

this approach, we perturb the contract w(θ) and impose the condition that for the optimal

contract w∗(θ) any perturbation should not give the principal any higher utility than w∗(θ).

This gives us the following lemma.

Lemma 6. Let (w, w̄) be a contract for a given w̄ ∈ R+. Let ŵ(θ) = w(θ) + αϵ(θ) be a

perturbation of w where α ∈ R and ϵ is any real valued measurable function defined on Θ.

The principal’s marginal expected payoff from the perturbation is given by

dV (w + αϵ, w̄)

dα

∣∣∣∣
α=0

=


E [ϵ(θ) · r(θ)] if EKµ−1(w(θ)−w̄) > 1 and EK−µ−1(w(θ)−w̄) > 1,

E [−ϵ(θ)] if EK−µ−1(w(θ)−w̄) < 1,

0 if EKµ−1(w(θ)−w̄) < 1,

where

r(θ) = −mw,w̄(θ) +
1

µg′′(mw,w̄(θ))
[(θ − w(θ)− θB + w̄) + βw̄]

and

βw̄ = E
(
θ − w(θ)− θB + w̄

g′′(mw,w̄(θ)

)
E(g′′(mw,w̄(θ))

E(g′′(mw,w̄(θ)))− g′′(p1)

is a constant that is determined in equilibrium.

The term r(θ) is the Frechet derivative which gives the marginal change in the expected

utility of the principal from perturbing w(θ). When we perturb w(θ), there is a direct effect

on the utility of the principal, which is the change in utility without taking into account the

induced change inm(θ); and an indirect effect which is the change in expected utility through

the induced change in m(θ). The first term in the expression of r(θ) is −mw,w̄(θ), which

is the direct effect on the expected utility from choosing the risky project as a consequence

of changing w(θ). This term is obviously negative as increasing w(θ) reduces the utility of

13



the principal. The second term is the indirect effect on the utility of the principal through

change in m(θ). The expected value of the second term multiplied by the perturbation ϵ(θ)

must be positive. This trade-off pins down the optimal contract w(θ).

We now define the following three sets based on where w∗(θ) lies:

A0 = {θ ∈ Θ : w∗(θ) = 0},

A1 = {θ ∈ Θ : w∗(θ) ∈ (0, θ)},

A2 = {θ ∈ Θ : w∗(θ) = θ}.

From the Frechet derivative derived above, the first-order conditions of the principal’s

problem can be written as:

r∗(θ)


≤ 0 a.e. if w∗(θ) = 0, i.e., θ ∈ A0;

= 0 a.e. if w∗(θ) ∈ (0, θ), i.e., θ ∈ A1;

≥ 0 a.e. if w∗(θ) = θ, i.e., θ ∈ A2.

We use the expression for r∗(θ) from Lemma 6 and the fact that g′′(x) = x−1(1 − x)−1

to rewrite the first-order condition as

(1−m∗(θ))(θ − w∗(θ)− θB + w̄∗ + βw̄∗)


≤ µ a.e. if w∗(θ) = 0, i.e., θ ∈ A0;

= µ a.e. if w∗(θ) ∈ (0, θ), i.e., θ ∈ A1;

≥ µ a.e. if w∗(θ) = θ, i.e., θ ∈ A2.

(6)

These conditions help us characterize the shape of the optimal contract. In the optimal

contract, there will be a region where limited liability constraints 0 ≤ w(θ) ≤ θ do not bind,

i.e., the set A1 has a positive measure.7 We call this region the “unconstrained” part of

the optimal w∗(θ) and denote it by w̃(θ). This unconstrained wage and the corresponding

information structure, which we denote by m̃w,w̄(·), satisfy the following equations.

Lemma 7. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition and

λ(A1) > 0. Let m∗ denote the agent’s best response to (w∗, w̄∗). Then,

w̃(θ)− w̄ = µ(g′(m̃w,w̄(θ))− g′(E[m∗(θ)])) for all θ ∈ A1, (7)

and,

(1− m̃(θ))(θ − w̃(θ)− θB + w̄∗ + βw̄) = µ, (8)

7This is formally proved later.
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where E[m∗(θ)] and βw̄∗ are constants determined in equilibrium.

These conditions jointly determine the unconstrained part of the optimal contract and

the corresponding information structure. Condition 7 come directly from equation 4. The

second condition 8 comes from the first-order condition of the principal in the region where

limited liability conditions are not binding. The next lemma shows that both m̃w,w̄(·) and
w̃(θ) are increasing. Additionally w̃(θ) is concave with slope less than 1.

Lemma 8. In an equilibrium with information acquisition, the unconstrained part of optimal

wage and the corresponding information structure are given by equations

∂m̃(θ)

∂θ
= µ−1m̃(θ)(1− m̃(θ))2, (9)

and
∂w̃(θ)

∂θ
= 1− m̃(θ), for all θ ∈ A1.

Furthermore, w∗(θ) is strictly concave when θ ∈ A1 .

From these lemmas, we can fully characterize the shape of the optimal contract. The

next proposition shows that the optimal contract when asset A is chosen has two regions.

First, the wage is zero below a cutoff value of realization of θ. We denote this cutoff by θ̂.

After values of θ greater than θ̂, the contract is unconstrained and is given by w̃(θ).

Proposition 2. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition

then there exists a cutoff θ̂ ∈ (θ, θ̄) such that

w∗(θ)

= 0 if θ ≤ θ̂;

= w̃(θ) if θ > θ̂.

The optimal information structure m∗
w,w̄ satisfies

dm∗
w,w̄(θ)

dθ

= 0 if θ < θ̂;

> 0 if θ > θ̂.

The optimal w̄∗ ∈ (0, θB − θ).

There are several things to unpack here. Let us do them one by one. First, note that

since w̃(θ) is concave with a slope less than 1, it implies that θ − w(θ), i.e., the principal’s

payoff is strictly increasing in θ. This result is intuitive. The principal gives an increasing

wage to the agent to incentivize efficient asset allocation. However, the principal also wants
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to benefit from this, hence her reward is also increasing in equilibrium. Thus the optimal

contract is dual monotone.8

Second, note that the optimal w̄∗ < θB − θ̄, which in turn implies that

θB − w̄∗ > θ.

This result is also intuitive. The term θB − w̄∗ is the payoff of the principal from the safe

project, while θ is the lowest payoff of the principal from the risky project since w(θ) = 0.

Therefore, the expression implies that the payoff of the principal from the risky project

cannot always be greater than the payoff from the safe project. If this were not true, then

there would be no benefit of information acquisition by agent to the principal in equilibrium.

The principal would simply prefer that the agent always chooses asset A.

This result has another important implication. Because of this result, combined with the

limited liability of the agent, the principal is unable to implement the first best information

structure. The relative gain (or loss) for the principal from choosing asset A over asset B

given the true state θ is θ is θ − θB, which determines the first best information structure

(see equation 3). Thus the maximum relative loss to the principal is θ − θB. Similarly, the

relative gain (or loss) to the agent from choosing asset A over asset B is given by w(θ)− w̄.

However, given that w̄∗ < θB − θ̄, and w(θ) > 0 by the limited liability of the agent, the

maximum relative loss to the agent is less than that of the principal.

Basically, given that w∗ < θB − θ̄, and that w(θ) ≥ 0, the principal’s loss will be greater

than the loss to the agent at low values of θ. To align the incentive of the agent as much

as possible with the first best, the principal offers as low a w(θ) as possible at low values of

θ. Hence in equilibrium, there exists a cutoff θ̂ below which she chooses w(θ) = 0 for every

θ ≤ θ̂.

Finally, w(θ) is a constant for θ ≤ θ̂, hence mw,w̄(θ) is also a constant. Therefore the

information intensity dmw,w̄(θ)/dθ is 0 in this region. The agent does not exert any effort to

distinguish between these low states. This is different from what was happening in the first

best when the principal was acquiring information about all θ.

We show numerically that the ratio of information acquired to the left of θ̂ and to the

right of θ̂ is lower in the case of the principal-agent problem than in the first best problem.

The Shannon’s entropy of the random variable θ is given by

H(θ) = −
∫ θ̄

θ

p(θ)ln(p(θ))dθ.

8Dual monotonicity is also obtained in the security design problem solved by Yang and Zeng (2019).
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The expected posterior entropy after observing the signal s given a information structure

m(·) is

H(θ|m) = −
∫ θ̄

θ

[q(1)p(θ|1)ln(p(θ|1)) + q(0)p(θ|0)ln(p(θ|0))]dθ,

where q(0) and q(1) are the probabilities of observing signal 0 and 1 respectively. The

information cost incurred in learning about a set [θ1, θ2] is the entropy reduction in that set

and we denote it as ∆H(θ1, θ2|m). It is given by

∆H(θ1, θ2|m) = −
∫ θ2

θ1

[q(1)p(θ|1)ln(p(θ|1)) + q(0)p(θ|0)ln(p(θ|0))− p(θ)ln(p(θ))]dθ

One way to define the left tail and the right tail region is to partition the set Θ around

a cutoff. A natural cutoff can be thought of as θB in which case the left tail region is the

interval [θ, θB] and the right tail region is the interval [θ, θB]. We show numerically that

rf.b. =
∆H(θ, θb|mf.b.)

∆H(θb, θ̄|mf.b.)
>

∆H(θ, θb|ms.b.)

∆H(θb, θ̄|ms.b.)
= rs.b., (10)

where mf.b.(·) and ms.b.(·) are the first-best and second-best information structures respec-

tively. This implies that the ratio of entropy reduction in the left tail and right tail is lower

in the second-best case than in the first-best case. Similar results hold if we choose the cutoff

as θ̂.

4.4 Numerical example and comparative statics

Here we first show a numerical example, and then discuss some comparative statics.

4.4.1 A numerical example

Figure 1 shows the optimal contract and the first-best and second-best information struc-

tures. We have chosen the following parameter values: θ ∼ U [0, 10], θb = 6 and µ = 0.2.

Notice that the asset choice is much more inefficient in the second best. Also, the informa-

tion intensity is zero in the region below θ̂. This is because no wage is paid below θ̂, hence

the agent does not exert effort to differentiate between different values in this region. Figure

1c shows the posterior probabilities after observing the signal realizations. The posterior

probabilities in the left tail are very close to the prior probability while in the right tail, they

are much apart from the prior. This shows that there is much more information acquisition

on the right side of the distribution than on the left side.
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(a) Optimal information structure (b) Optimal wage

(c) Prior and posteriors

Figure 1: Optimal contract and information structure

4.4.2 Comparative statics

We numerically study the impact of change in information cost µ on the contract and the

information structure. The parameter values chosen are θ ∼ U [0, 10] and θb = 6. We choose

two different values of µ (see figure 2). First notice that as µ decreases from 0.3 to 0.2, the

first-best information structure becomes more efficient. The likelihood of choosing asset A

if θ > θb = 6 (θ < θb) increases (decreases). Similarly, the second-best information structure

also becomes more efficient. Now let us see the change in the contracts. Since the expected

payoff from asset B is higher, so as µ decreases, payment from asset B increases. Further, θ̂

also increases.

Figure 3 shows the impact of increasing the profitability of asset B compared to asset

A. The parameter values are as follows: θ ∼ U [0, 10], µ = 0.2 and θB takes the values 5

and 6. As θB increases, the probability of choosing asset A decreases for all values of θ. To
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Figure 2: Impact of change in µ

Figure 3: Impact of change in θB

incentivize the agent to choose asset A with lower probability, the principal offers a higher

w̄ when θB is higher.

Finally, Table I shows that the ratio of information acquired to the left of cutoff θB or θ̂

compared to the right of the cutoff is higher in the case of first-best than the second best.

Thus in the second-best relatively less information is acquired about the left tail.

Welfare loss due to fat left tail: We have argued that as there is less information

acquisition about the left tail, projects with thick left tails also get chosen. We show that as

the thickness of the left tail increases, the welfare loss also increases (Figure 4). The figure

is drawn with θB = 5 and µ = 0.2. θ is normally distributed with mean 5 and we vary the

standard deviation and check the welfare loss for different values of standard deviation. We

observe that as expected the welfare loss increases with standard deviation.
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µ θB θ̂ rf.b. rs.b. rf.b. rs.b.
Cutoff θ̂ Cutoff θB

0.2 5 6.00 1.27 0.55 1.00 0.42
0.2 6 6.57 0.93 0.52 0.84 0.45
0.3 5 5.75 1.10 0.55 1.00 0.45
0.3 6 7.21 1.19 0.38 0.84 0.30

Table I: Ratio of left tail vs. right tail information acquisition

Figure 4: Impact of increasing standard deviation on welfare loss
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5 Robustness: Asset B has non-degenerate distribu-

tion

So far we have assumed that asset B has a degenerate distribution. We now relax this

assumption. Let the outcome of asset B be a random variable denoted by κ with probability

distribution function h(κ). Let us denote the expected value of asset B by κ̄. If the agent

chooses this asset and κ is realized, then the principal pays the agent a wage wB(κ).

First, let us see what happens to the principal problem. Her optimization problem can

be written as

max
m

E[m(θ)(θ − κ̄)] + κ̄− µc(m). (11)

This problem is exactly the same as the first best problem in section 3 except that θB has

been replaced by κ̄. Therefore, if the expected value of the cash flow from asset B is the

same as before, i.e., κ̄ = θB, then the solution to the first best problem remains the same.

Now let us analyze the second best. The agent’s optimization problem for the wage

(w,wB) offered by the principal is given by

max
m

E[m(θ)w(θ) + (1−m(θ))Eh[wB(κ)]]− µc(m) (12)

Denote the solution to the agent’s problem by mw,wB
(·). The principal’s problem can be

written as

max
w(θ),wB(κ)

E[mw,wB
(θ)(θ − w(θ)) + (1−mw,wB

(θ))(κ̄− Eh[wB(κ)])]

Therefore the principal’s problem does not change except that the terms (θB) and w̄ have

been replaced by κ and Eh[wB(κ)]. Suppose the solution to the original problem is (w∗, w̄∗).

Therefore, the solution to this new problem will be that w∗(θ) remains the same and

Eh[w
∗(κ)] = w̄∗. The distribution of w∗(κ) is irrelevant to the choice of optimal signal

structure. Therefore the distribution of asset B is irrelevant.

6 Conclusion

The role of the financial intermediaries is to allocate capital to projects with the highest

net present value. However, these intermediaries rely on managers to learn about cash flows

of the new assets particularly those about which there is very little historical information.

We show in a principal-agent setting that the optimal contract these managers are given

incentivizes them not to learn about the tail risks of the asset they are investing in. This can

result in even those projects being chosen which have a thick left tail and high likelihood of
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failure ex post. Thus, our model provides an explanation for why rational agents ignore the

tail risk or crash risk in the investments they make.

Before the financial crisis of 2008, financial institutions held risky assets on their balance

sheets. Broadly, there are two views on why banks did so. The first argument is that banks

took this risk because they believed that they would be bailed out (Kelly et al. (2016),

Bianchi (2016), Farhi and Tirole (2012), Acharya et al. (2010)). The other argument, as

discussed above, is that managers at banks suffered from various behavioural biases which

led to ignoring and underestimating the risks in their investments. Our paper provides an

alternative explanation for why banks misunderstood the risks. The banks were investing in

new kinds of innovative financial products such as ABSs and CDOs. The managers did not

put effort into understanding the left tail of these investments because of agency problems

related to exerting effort. Their contract simply did not incentivize them to do so. Thus we

provide a novel explanation of the financial crisis.
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Appendix

A Proofs

A.1 Proof of Lemma 2

Suppose w̄ = 0 and w(θ) > 0 for all θ ∈ A, then the agent’s best response is to acquire no

information and choose a = 1. Next, suppose w̄ > 0 and w(θ) = 0 for all θ ∈ Θ, except

possibly for a subset of measure 0, then the agent’s best response is to acquire no information

and choose a = 0. Lastly, suppose that w̄ = 0 and w(θ) = 0 for all θ ∈ Θ, except possibly

for a subset of measure 0, then the agent’s best response is to acquire no information and

choose either a = 0 or a = 1.

From the agent’s best response given by Equation 4 we know that,

mw,w̄(θ) = f

(
w(θ) + w̄

µ
− g′(E[mw,w̄])

)
where f = g′−1.

Taking the partial derivative with respect to w̄, we get,

∂mw,w̄(θ)

∂w̄
=f ′

(
w(θ)− w̄

µ
+ g′(E[mw,w̄])

)(
− 1

µ
+ g′′(E[mw,w̄])

∂E[mw,w̄(θ)]

∂w̄

)
.

Taking expectations on both sides, noting that f ′(x) = 1
g′′(f(x))

, and then rearranging we

get,

∂E[mw,w̄(θ)]

∂w̄
= −E[mw,w̄(θ)]− [E[mw,w̄(θ)]]

2

µ(1− g′′(E[mw,w̄(θ)]))
= −E[mw,w̄(θ)]− E[(mw,w̄(θ))

2]

µ

E[mw,w̄(θ)]− [E[mw,w̄(θ)]]
2

E[(mw,w̄(θ))2]− [E[mw,w̄(θ)]]2
,

and,

∂mw,w̄(θ)

∂w̄
= −mw,w̄(θ)− (mw,w̄(θ))

2

µ(1− g′′(E[mw,w̄(θ)]))
= −mw,w̄(θ)− (mw,w̄(θ))

2

µ

E[mw,w̄(θ)]− [E[mw,w̄(θ)]]
2

E[(mw,w̄(θ))2]− [E[mw,w̄(θ)]]2
.

Further note that since the agent acquires information, E[mw,w̄(θ)] ∈ (0, 1) and mw,w̄(θ) <

(mw,w̄(θ))
2 a.e., which implies that,

∂E[mw,w̄(θ)]

∂w̄
< 0, and

∂mw,w̄(θ)

∂w̄
< 0 a.e. .

A.2 Proof of Lemma 3

We start by computing ∂mw,w̄(θ)

∂w̄
.
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From the agent’s best response given by Equation 4 we know that,

mw,w̄(θ) = f

(
w(θ) + w̄

µ
− g′(E[mw,w̄])

)
where f = g′−1.

Taking the partial derivative with respect to w̄, we get,

∂mw,w̄(θ)

∂w̄
=f ′

(
w(θ)− w̄

µ
+ g′(E[mw,w̄])

)(
− 1

µ
+ g′′(E[mw,w̄])

∂E[mw,w̄(θ)]

∂w̄

)
.

Taking expectations on both sides, noting that f ′(x) = 1
g′′(f(x))

, and then rearranging we get,

∂E[mw,w̄(θ)]

∂w̄
= −E[mw,w̄(θ)]− [E[mw,w̄(θ)]]

2

µ(1− g′′(E[mw,w̄(θ)]))
= −E[mw,w̄(θ)]− E[(mw,w̄(θ))

2]

µ

E[mw,w̄(θ)]− [E[mw,w̄(θ)]]
2

E[(mw,w̄(θ))2]− [E[mw,w̄(θ)]]2
,

and,

∂mw,w̄(θ)

∂w̄
= −mw,w̄(θ)− (mw,w̄(θ))

2

µ(1− g′′(E[mw,w̄(θ)]))
= −mw,w̄(θ)− (mw,w̄(θ))

2

µ

E[mw,w̄(θ)]− [E[mw,w̄(θ)]]
2

E[(mw,w̄(θ))2]− [E[mw,w̄(θ)]]2
.

Further note that since the agent acuires information, E[mw,w̄(θ)] ∈ (0, 1) and mw,w̄(θ) <

(mw,w̄(θ))
2 a.e., which implies that,

∂E[mw,w̄(θ)]

∂w̄
< 0, and

∂mw,w̄(θ)

∂w̄
< 0 a.e. .

A.3 Proof of Lemma 4

Let m∗ denote the best response of the agent to (w∗, w̄∗). From Lemma ?? we know that

∂V (w∗, w̄∗)

∂w̄∗

∣∣∣∣
w̄∗=θB

= E

 ∂m∗(θ)

∂w̄

∣∣∣∣
w̄∗=θB︸ ︷︷ ︸

<0 a.e.

{(θ − w∗(θ))︸ ︷︷ ︸
≥0

− (θB − w̄∗)︸ ︷︷ ︸
=0

} − (1−m∗(θ))︸ ︷︷ ︸
>0 a.e.

 < 0.

A.4 Proof of Lemma 5

For the sake of contradiction, suppose that w∗ is decreasing on E ⊆ Θ and there exist

E1, E2 ⊂ E such that E1, E2 have positive lebesgue measure and w∗(θ
′
) > w∗(θ

′′
) whenever

θ
′ ∈ E1 and θ

′′ ∈ E2. Let e = inf E and ē = supE. We construct a new contract (ŵ, ˆ̄w)

by rearranging the values of w∗ on E such that ŵ is is increasing on E. Towards that we

define a CDF on E given by G(θ) :=
∫ θ

θ
1EdF (θ) and a rearrangement function given by

R(θ) : E → E, defined implicitly by the equation G(θ) = G(ē) − G(R(θ)) ∀ θ ∈ E. Note
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that G(e) = 0 and G(ē) is equal to the probability that θ ∈ E. Furthermore, R maps E

onto E and since F is absolutely continuous with respect to the Lebesgue measure and has

full support, R is strictly decreasing on E, and therefore R is a bijection, and therefore a

rearrangement. Additionally, note that d(G(θ)) = d(G(R(θ))), and therefore R is a measure

preserving rearrangement.9,10

We define (ŵ, ˆ̄w) as follows

ŵ(θ) =

w∗(θ) if θ /∈ E,

w∗(R(θ)) if θ ∈ E.

ˆ̄w = w̄∗.

Since R(θ) is a measure preserving rearrangement, by the definition of ŵ we have∫
E

ŵ(θ)dG(θ) =

∫
E

w∗(R(θ))dG(R(θ)) =

∫
E

w∗(θ)dG(θ).

Recall that the agent’s best response m∗ to the contract (w∗, w̄∗), is given by

w∗(θ)− w̄∗

µ
= g′(m∗(θ))− E[g′(m∗(θ))].

Since ŵ is a measure preserving rearrangement of w∗ and ˆ̄w = w̄∗, the agent’s best response

m̂ to the contract (ŵ, ˆ̄w) satisfies E[m̂(θ)] = E[m∗(θ)], which implies that (ŵ, ˆ̄w) induces

information acquisition from the agent. In light of this note that m̂ is a measure preserving

rearrangement of m∗, i.e.,

m̂(θ) =

m∗(θ) if θ /∈ E,

m∗(R(θ)) if θ ∈ E.

9To be precise d(G(θ)) = −d(G(R(θ))) due to the reverse orientation of R(θ) from the definition. We
ignore the negative sign and reverse the integration limits accordingly.

10By “measure preserving rearrangement” we mean that θ and R(θ) are assigned the same “mass” since
d(G(θ)) = d(G(R(θ))).
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Let V ∗ and V̂ be the payoff of the principal under contracts (w∗, w̄∗) and (ŵ, ˆ̄w) respectively.

V̂ − V ∗ =

∫
E

[m̂(θ)(θ − ŵ(θ)− θB + ˆ̄w)]dG(θ) + (θB − ˆ̄w)

−
∫
E

[m∗(θ)(θ − w∗(θ)− θB + w̄∗)]dG(θ) + (θB − w̄∗)

=

∫
E

[m̂(θ)(θ − ŵ(θ))−m∗(θ)(θ − w∗(θ))]dG(θ)

=

∫
E

[m∗(R(θ))(θ − w∗(R(θ)))−m∗(θ)(θ − w∗(θ))]dG(θ) (using the definition of m̂)

=

∫
E

[m∗(θ)(R(θ)− w∗(θ))−m∗(R(θ))(R(θ)− w∗(R(θ)))]dG(R(θ)) (switching from θ to R(θ))

=
1

2

∫
E

[m∗(R(θ))(θ − w∗(R(θ)))−m∗(θ)(θ − w∗(θ))

+m∗(θ)(R(θ)− w∗(θ))−m∗(R(θ))(R(θ)− w∗(R(θ)))]dG(θ) (since dG(θ) = dG(R(θ)))

=
1

2

∫
E

[m∗(R(θ))(θ −R(θ))−m∗(θ)(θ −R(θ))]dG(θ)

=
1

2

∫
E

[(m∗(R(θ))−m∗(θ))(θ −R(θ))]dG(θ)

Finally note that by since by assumption w∗ is decreasing on E, which implies that m∗ is

decreasing on E (using the agent’s best response) which implies that if θ − R(θ) > 0 then

m∗(R(θ))−m∗(θ) ≥ 0 and if θ − R(θ) < 0 then m∗(R(θ))−m∗(θ) ≤ 0, which implies that

(m∗(R(θ))−m∗(θ))(θ − R(θ)) ≥ 0 for all θ ∈ E. Further notice that since w∗(θ) is strictly

greater on E1 compared to E2, m
∗(R(θ))−m∗(θ) ̸= 0 on a strictly positive measure subset

of E. We also know that {θ : θ ∈ E, θ = R(θ)} is either empty or a singleton set because

R(θ) is strictly decreasing on E and therefore {θ : θ ∈ E, θ ̸= R(θ)} has the same measure

as that of E and therefore V̂ − V ∗ > 0, a contradiction to the optimality of (w∗, w̄∗).

A.5 Proof of Lemma 6

We first look at the change in the best response of the agent when the principal’s strategy

is perturbed. Recall from Proposition 1 that the best response of the agent can take three

forms (i)p1 = 0 a.s., (ii)p1 = 1 a.s., and (iii)p1 ∈ (0, 1). We consider the case (iii) when

p1 ∈ (0, 1), i.e., the agent’s best response is an interior point of the set M and we know that

EKµ−1(w(θ)−w̄) > 1 and EK−µ−1(w(θ)−w̄) > 1. In this case the best response of the agent to a

contract (w, w̄) offered by the principal is given by

w(θ)− w̄ = µ · [g′(mw,w̄(θ))− g′(p1)] (A.1)
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In particular for the perturbation ϵ(θ) scaled by α,

dmw,w̄(θ)

dα

∣∣∣∣
α=0

= [g′′(mw,w̄(θ))]
−1

[
ϵ(θ)

µ
+ g′′(p1)

dp1
dα

∣∣∣∣
α=0

]
.

Since p1 = Emw,w̄(θ), we have dp1
dα

= Edmw,w̄(θ)

dα
. Taking expectations on both sides of the

above equation we get

dp1
dα

∣∣∣∣
α=0

=
1

µ
E
[

ϵ(θ)

g′′(mw,w̄(θ))

]
E[g′′(mw,w̄(θ))]

E[g′′(mw,w̄(θ))]− g′′(p1)
.

Plugging back dp1
dα

∣∣
α=0

in the expression of dmw,w̄(θ)

dα

∣∣∣
α=0

we get

dmw,w̄(θ)

dα

∣∣∣∣
α=0

= [g′′(mw,w̄(θ))]
−1

[
ϵ(θ)

µ
+

g′′(p1)

µ
E
[

ϵ(θ)

g′′(mw,w̄(θ))

]
E[g′′(mw,w̄(θ))]

E[g′′(mw,w̄(θ))]− g′′(p1)

]
(A.2)

We now turn to calculate the marginal change in payoff for the principal from applying the

perturbation ϵ(θ).

dV (w + αϵ, w̄)

dα

∣∣∣∣
α=0

=

∫
Θ

[
dmw,w̄(θ)

dα

∣∣∣∣
α=0

(θ − w(θ)− θB + w̄)−mw,w̄(θ)ϵ(θ)

]
dP

= E
[
dmw,w̄(θ)

dα

∣∣∣∣
α=0

(θ − w(θ)− θB + w̄)−mw,w̄(θ)ϵ(θ)

]

Plugging dmw,w̄(θ)

dα

∣∣∣
α=0

derived above and after simplifying the expression we get,

dV (w + αϵ, w̄)

dα

∣∣∣∣
α=0

= E [ϵ(θ) · r(θ)] ,

where

r(θ) = −mw,w̄(θ) +
1

µg′′(mw,w̄(θ))
[(θ − w(θ)− θB + w̄) + βw̄]

and

βw̄ = E
(
θ − w(θ)− θB + w̄

g′′(mw,w̄(θ)

)
E(g′′(mw,w̄(θ))

E(g′′(mw,w̄(θ)))− g′′(p1)

is a constant that is determined in equilibrium.

Finally, consider the case when p1 = 1 a.s., i.e., mw,w̄(θ) = 1 a.s., which, from Proposition

?? implies that EKµ−1(w(θ)−w̄) ≤ 1. Consider the case when the inequality is strict. Since

limα→0 µ
−1αϵ(θ) = 0 ∀θ ∈ Θ, ∃δ > 0, such that ∀α ∈ (−δ, δ) we have EKµ−1(w(θ)+αϵ(θ)−w̄) < 1
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and mw+αϵ,w̄ = 1 and therefore dmw,w̄(θ)

dα

∣∣∣
α=0

= 0. This further implies that

dV (w + αϵ, w̄)

dα

∣∣∣∣
α=0

=

∫
Θ

[
dmw,w̄(θ)

dα

∣∣∣∣
α=0

(θ − w(θ)− θB + w̄)−mw,w̄(θ)ϵ(θ)

]
dP

= E [−mw,w̄(θ)ϵ(θ)]

= E [−ϵ(θ)] , since mw,w̄(θ) = 1, a.s..

Similarly when p1 = 0 a.s., i.e., mw,w̄(θ) = 0 a.s., and EK−µ−1(w(θ)−w̄) < 1

dV (w + αϵ, w̄)

dα

∣∣∣∣
α=0

= E [−mw,w̄(θ)ϵ(θ)]

= 0, since mw,w̄(θ) = 0, a.s..

A.6 Proof of Proposition 2

Our proof builds on a series of lemmas given below.

Lemma 9. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition,

then, at least one of λ(A0) or λ(A2) is equal to 0.

Proof. For the sake of contradiction suppose that λ(A0) > 0 and λ(A2) > 0. Let θα ∈ A0

and θβ ∈ A2. Note that w∗(θβ) > w∗(θα) = 0 and from the agent’s best response given by

equation A.1, we know that m∗(θβ) > m∗(θα). From the principal’s first order necessary

condition for optimality given by equation 6, we get

(1−m∗(θβ))(θβ − w∗(θβ)− θB + w̄ + βw̄∗) ≥ µ,

(1−m∗(θα))(θα − w∗(θα)− θB + w̄ + βw̄∗) ≤ µ.

Since µ > 0, we must have 1 −m∗(θβ) > 0 and θβ − w∗(θβ) − θB + w̄ + βw̄∗ > 0. But that

means that

1−m∗(θα) > 1−m∗(θβ) > 0,

and,

θα − w∗(θα)− θB + w̄ + βw̄∗ > θβ − w∗(θβ)− θB + w̄ + βw̄∗ > 0,

which implies that

(1−m∗(θα))(θα − w∗(θα)− θB + w̄ + βw̄∗) > µ,

which is a contradiction to the optimality of (w∗, w̄∗) since θα ∈ A0 and this inconsistency
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holds for a positive measure of points in A0 and A2.

Lemma 10. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition,

then there exist cutoffs θ0, θ1 ∈ Θ such that

λ([θ, θ0]△A0) = 0

λ([θ0, θ1]△A2) = 0

λ([θ1, θ̄]△A1) = 0

where λ represents the lebesgue measure set function and △ represents the symmetric differ-

ence operation on sets.

Proof. Let us define āi = inf{x : x ∈ Θ, λ(Ai ∩ [x, θ̄]) = 0} and ai = sup{x : x ∈ Θ, λ(Ai ∩
[θ, x]) = 0} for i ∈ {0, 1, 2}. Note that the interval [ai, āi] contains Ai except for zero measure

subsets of Ai. If ai ≥ āi, then it means that Ai has zero measure.

From Lemma ?? we know that w∗ is weakly increasing on Θ a.e., and therefore, ā0 ≤ a1

and ā0 ≤ a2. We further claim that ā2 ≤ a1 . To see this suppose that ā2 − a1 = δ > 0.

Define B1 = [a1, a1 +
δ
3
] ∩ A1 and B2 = [ā2 − δ

3
, ā2] ∩ A2. Note that B1 and B2 both have

positive measure and supB1 < inf B2 . Let m∗ denote the best response of the agent when

offered the contract (w∗, w̄∗) . From equations A.1 and 6 we know that for any θα ∈ B2 we

must have

w∗(θα)− w̄∗ = µ(g′(m∗(θα))− g′(E(m∗(θ))), and,

(1−m∗(θα))(θα − w∗(θα)− θB + w̄∗ + βw̄∗) ≥ µ

Similarly we know that for any θβ ∈ B1 we must have

w∗(θβ)− w̄∗ = µ(g′(m∗(θβ))− g′(E(m∗(θ))), and,

(1−m∗(θβ))(θβ − w∗(θβ)− θB + w̄∗ + βw̄∗) = µ

Since θα ∈ B2, we have w∗(θα) = θα and since θβ ∈ B1, we have w∗(θβ) < θβ. Furthermore,

we have (θα − w∗(θα) − θB + w̄∗ + βw̄∗) < (θβ − w∗(θβ) − θB + w̄∗ + βw̄∗). This implies

that (1 − m∗(θα)) > (1 − m∗(θβ)) =⇒ m∗(θα) < m∗(θβ). However, equation A.1 tells us

that the agent’s best response at any θ ∈ Θ, m∗(θ), is strictly increasing in w∗(θ), and since

w∗(θβ) < w∗(θα) we must have m∗(θβ) < m∗(θα). Since this inconsistency is for any θα ∈ B2

and any θβ ∈ B1, and B1 and B2 have strictly positive measures, we get a contradiction to

the assertion that (w∗, w̄∗) is an optimal contract. Therefore ā2 ≤ a1.

Finally note that since ā0 ≤ a1, ā0 ≤ a2, ā2 ≤ a1 and that
∑2

i=0 λ([ai, āi]) = λ(Θ), we
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must have ā0 = a2 and ā2 = a1 and therefore, there exist θ0 := ā0 and θ1 := ā2 satisfying

the claim.

Lemma 11. (Temporary. We will have a more precise result)Suppose (w∗, w̄∗) is an optimal

contract that induces information acquisition, then there exists a cutoff θ̂ ∈ Θ, such that

either

w∗(θ)

= 0 a.e. if θ < θ̂,

∈ (0, θ) a.e. if θ > θ̂,

or,

w∗(θ)

= θ a.e. if θ < θ̂,

∈ (0, θ) a.e. if θ > θ̂.

Proof. Follows from Lemma 9 and Lemma 10.

Lemma 12. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition,

then, λ(A0) > 0.

Proof. Suppose that λ(A0) = 0. Let m∗ be the best response of the agent to (w∗, w̄∗). From

Lemma 11 we know that such a contract will have the following structure for some θ̂ ∈ Θ

w∗(θ)

= θ a.e. if θ < θ̂,

∈ (0, θ) a.e. if θ > θ̂.

From Lemma 8, we know that w∗ is strictly increasing on A1 and A2 since m∗(θ) ∈ (0, 1)

a.e., which implies that w∗ is strictly increasing on Θ a.e.. Without loss of generality, we

will assume that θ ∈ A1 ∪ A2. We consider two possibilities separately.

• Case 1: θ > 0 : Note that since θ ∈ A1 ∪ A2, we have w∗(θ) > 0. Importantly, note

that w̄∗ > w∗(θ), otherwise w∗(θ) ≥ w̄∗ a.e. and therefore, the agent chooses a = 1

without acquiring information. Consider the perturbed contract given by

ŵ(θ) =w∗(θ)− ϵ,

ˆ̄w =w̄∗ − ϵ,

where ϵ is chosen in such as way that w∗(θ)−ϵ > 0, i.e., θ−ϵ > 0 and w̄∗−ϵ > 0.11 Note

11It is possible that that (ŵ, ˆ̄w) does not satisfy the limited liability constraints of the players on a set of
measure zero, but that doesn’t affect the result since we can redefine (ŵ, ˆ̄w) to satisfy these constraints on
this measure zero set without affecting the payoffs of any player.
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that it is possible to find such an ϵ since from Lemma 2 we know that w̄∗ > 0. Further

note that since ŵ(θ)− ˆ̄w = w∗(θ)−w̄∗ a.e. on Θ, from Proposition ?? and Equation A.1

we know the agent’s best response remains unchanged under the perturbed contract.

However, the principal is strictly better off in the perturbed contract and therefore

(w∗, w̄∗) cannot be optimal.

• Case 2: θ = 0 : In this case w∗(θ) = 0. Recalling that w̄∗ > 0, let ϵ1 > 0 be such that

w̄∗ − ϵ1 > 0. Let us define θ̂1 such that w∗(θ̂1) = ϵ1. Since w∗ is strictly increasing, θ̂1

is unique. We will construct a perturbed contract (ŵ, ˆ̄w) that improves on (w∗, w̄∗).

We now define the following three sets:

X1 = [θ, θ̂1),

X2 = (θ̂2, θ̂2 + ϵ2),

X3 = (θ̂1, θ̂2) ∪ (θ̂2 + ϵ2, θ̄]

and the perturbed contract

ŵ(θ) =


0 if θ ∈ X1,

w∗(θ)− ϵ1 − δ if θ ∈ X2,

w∗(θ)− ϵ1 if θ ∈ X3,

ˆ̄w = w̄∗ − ϵ1,

for some θ̂2 > θ̂1 and δ > 0 such that ŵ(θ) ∈ [0, θ]. Note that we can find such a δ

because ∃γ ∈ [θ, θ̄) such that for all θ ≥ γ we have w∗(θ) > w̄∗, since otherwise, the

agent will choose a = 0 without acquiring information. Let us denote the best response

of the agent to the contract (ŵ, ˆ̄w) by m̂. The best response of the agent to a contract

(w, w̄) is given by the following equation which is simply a reformulation of Equation

A.1.

m(θ) = f(µ−1(w(θ)− w̄) + g′(E[m(θ)]).

We define an auxiliary function t(ŵ(θ)) as

t(ŵ(θ), ˆ̄w) = f(µ−1(ŵ(θ)− ˆ̄w) + g′(E[m∗(θ)])). (A.3)
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Substituting the definition of ŵ(θ) and ˆ̄w gives

t(ŵ(θ)) =


f(µ−1(w∗(θ)− w̄∗ + ϵ1) + g′(E[m∗(θ)])) if θ ∈ X1,

f(µ−1(w∗(θ)− w̄∗ − δ) + g′(E[m∗(θ)])) if θ ∈ X2,

f(µ−1(w∗(θ)− w̄∗) + g′(E[m∗(θ)])) if θ ∈ X3.

Now E[t(ŵ(θ))−m∗(θ)] can be written as

E[t(ŵ(θ))−m∗(θ)]

=

∫ θ̂1(ϵ1)

θ

[f(µ−1(w∗(θ)− w̄∗ + ϵ1) + g′(E[m∗(θ)]))− f(µ−1(w∗(θ)− w̄∗) + g′(E[m∗(θ)]))]dP (θ)

+

∫ θ̂2+ϵ2

θ̂2

[f(µ−1(w∗(θ)− w̄∗ − δ) + g′(E[m∗(θ)]))− f(µ−1(w∗(θ)− w̄∗) + g′(E[m∗(θ)]))]dP (θ)

Denote the first integral on the right-hand side, which is a function of θ̂1 and therefore

a function of ϵ1 by T (ϵ1) and the second term, which is a function of ϵ2 by S(ϵ2). Also

note that since f is strictly increasing, T (ϵ1) and S(ϵ2) are continuous functions with

T (0) = S(0) = 0 and T ′(ϵ1) > 0 and S ′(ϵ2) < 0. This implies that both T and S

are invertible functions in the vicinity of 0. Now we choose ϵ2 = S−1(−T (ϵ1)), which

means that E[t(ŵ(θ)) − m∗(θ)] = 0, which implies that given ϵ1, θ̂2, δ, and with this

choice of ϵ2 we have E[m̂(θ))] = E[m∗(θ)]. Since ϵ1 can be made arbitrarily small, such

θ̂1, δ and ϵ2 exist. We further note that∣∣∣∣limϵ1↓0 δ

ϵ1

∣∣∣∣ < ζ ∈ (0,∞), (A.4)

since f is bounded and differentiable, and P is absolutely continuous and has full

support. Next note that since f is differentiable, using the first order Taylor expansion,

we have

m̂(θ)−m∗(θ) =f(µ−1(ŵ(θ)− ˆ̄w) + g′(E[m̂(θ)])− f(µ−1(w∗(θ)− w̄∗)− g′(E[m∗(θ)])

=f(µ−1(ŵ(θ)− ˆ̄w) + g′(E[m∗(θ)])− f(µ−1(w∗(θ)− w̄∗)− g′(E[m∗(θ)])

=− f ′(µ−1(w∗(θ)− w̄∗) + g′(E[m∗(θ)])(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))

+ o(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))
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This implies that

|m̂(θ)−m∗(θ)| =| − f ′(µ−1(w∗(θ)− w̄∗) + g′(E[m∗(θ)])(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))

+ o(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))|

≤|f ′(µ−1(w∗(θ)− w̄∗) + g′(E[m∗(θ)])| · |(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))|

+ |o(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))|

≤η|(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))|+ |o(µ−1(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗))|,
(A.5)

for some η > 0 since f ′ is bounded above in the relevant domain. Now we calculate

the change in the payoff of the principal from offering the perturbed contract

V (ŵ, ˆ̄w)− V (w∗, w̄∗) =

∫ θ̄

θ

[
m̂(θ)(θ − ŵ(θ)− θB + ˆ̄w)−m∗(θ)(θ − w∗(θ)− θB + w̄∗)

]
dP (θ)

+ (θB − ˆ̄w)− (θB − w̄∗).

=I1 + I2 + I3 + ϵ1,

where

Ii =

∫
Xi

[
m̂(θ)(θ − ŵ(θ)− θB + ˆ̄w)−m∗(θ)(θ − w∗(θ)− θB + w̄∗)

]
dP (θ).

We will now evaluate each of these integrals separately.

I1 =

∫ θ̂1

θ

[
m̂(θ)(θ − ŵ(θ)− θB + ˆ̄w)−m∗(θ)(θ − w∗(θ)− θB + w̄∗)

]
dP (θ)

=

∫ θ̂1

θ

[
m∗(θ)(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗) + (m̂(θ)−m∗(θ)(θ − ŵ(θ)− θB + ˆ̄w))

]
dP (θ)

Note that when θ ∈ X1, |w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗| ≤ ϵ1 because Lemma 8 tells us that
dw∗(θ)

dθ
≤ 1. Further, using Equation A.5 we have

|I1|
ϵ1

≤
∫ θ̂1

θ

[
|m∗(θ)|+ ηµ−1 +

|o(µ−1ϵ1)|
ϵ1

]
dP (θ).

Since f ∈ C∞ the integrand is bounded. Further, limϵ1↓0 θ̂1 = θ, we have limϵ1↓0
|I1|
ϵ1

= 0

and therefore, I1(ϵ1) = o(ϵ1).
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Similarly,

I2 =

∫ θ̂2+ϵ2

θ̂2

[
m∗(θ)(w∗(θ)− ŵ(θ) + ˆ̄w − w̄∗) + (m̂(θ)−m∗(θ)(θ − ŵ(θ)− θB + ˆ̄w))

]
dP (θ)

Note that when θ ∈ X2, |w∗(θ)− ŵ(θ) + ˆ̄w− w̄∗| = δ. Further, using Equation A.4 we

have

|I2|
ϵ1

≤
∫ θ̂2+ϵ2

θ̂2

[
|m∗(θ)ζ|+ ηµ−1 +

|o(µ−1δ)|
ϵ1

]
dP (θ).

Since f ∈ C∞, integrand is bounded above and limϵ1↓0 ϵ2 = 0, we have limϵ1↓0
|I2|
ϵ1

= 0

and therefore, I2(ϵ1) = o(ϵ1). Since m
∗ = m̂ and θ−ŵ(θ)−θB+ ˆ̄w = θ−w∗(θ)−θB+w̄∗

on X3, we have I3 = 0.

To complete the argument recall that

V (ŵ, ˆ̄w)− V (w∗, w̄∗) =I1 + I2 + I3 + ϵ1

=I1 + I2 + ϵ1.

Since I1 = o(ϵ1) and I2 = o(ϵ1), there exists an ϵ̂1 > 0 such that I1(ϵ1)+ I2(ϵ1)+ ϵ1 > 0

for all 0 < ϵ1 < ϵ̂1, which is a contradiction to the optimality of (w∗, w̄∗).

Lemma 13. Suppose (w∗, w̄∗) is an optimal contract that induces information acquisition,

then there exists θ∗ ∈ (θ, θ̄) such that

w∗(θ) = 0 if θ < θ∗, and ,

dw∗

dθ
= 1−m∗(θ) if θ > θ∗.

Furthermore, limθ↑θ∗ w
∗(θ) = limθ↓θ∗ w

∗(θ), i.e., w∗(θ) is continuous at θ∗.

Proof. The first part of the lemma is a straightforward consequence of Lemma 9, Lemma

10, and Lemma 12.

To see that w∗(θ) is continuous at θ, let us assume that it is not, i.e., limθ↑θ∗ w
∗(θ) <

limθ↓θ∗ w
∗(θ). Note that the reverse inequality is not possible owing to the fact that w∗ is

increasing. From the first order necessary condition of optimality given by Equation 6 we

know that
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(1−m∗(θ))(θ − w∗(θ)− θB + w̄∗ + βw̄∗)

≤ µ a.e. if w∗(θ) = 0, i.e., θ ∈ A0,

= µ a.e. if w∗(θ) ∈ (0, θ), i.e., θ ∈ A1,

i.e.,

lim
θ↑θ∗

(1−m∗(θ))(θ−w∗(θ)− θB + w̄∗+βw̄∗) ≤ lim
θ↓θ∗

(1−m∗(θ))(θ−w∗(θ)− θB + w̄∗+βw̄∗) = µ.

Since limθ↑θ∗ w
∗(θ) < limθ↓θ∗ w

∗(θ), using the agent’s best response given by Equation A.1,

we have limθ↑θ∗(1 − m∗(θ)) > limθ↓θ∗(1 − m∗(θ)), which implies that limθ↑θ∗(θ − w∗(θ)) <

limθ↓θ∗(θ − w∗(θ)), which implies that limθ↑θ∗ w
∗(θ) > limθ↓θ∗ w

∗(θ), a contradiction.

These lemmas combined together give the proof of the proposition.
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