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Abstract

This paper introduces the concept of di�usion of shocks in a macroeconomic network

consisting of inter-sectoral production linkages. Using sectoral and �rm level data, the

paper documents two empirical facts. First, sectoral output do not react contempora-

neously to shocks in input sectors (it only reacts with a lag). Second, di�erent sectors

take di�erent time horizon to respond to shocks to their input sectors. I then incor-

porate these features in a model of production network to study the contribution of

sectoral shocks to aggregate �uctuations. I show that if sectors have di�erent reaction

horizons it leads to di�usion of shocks through the network over time which prevents

the inter-sectoral linkages to form the feedback loop structure essential to generate ag-

gregate volatility. So, the impact of a given sectoral shock lingers over a longer time

period (due to di�usion) but contributes less to aggregate volatility in any given period.

Finally, I use a factor model to estimate the contribution of aggregate vs idiosyncratic

sectoral shocks to aggregate �uctuations in US industrial production (IP) data. I �nd

that in the case of a di�usion adjusted network model the contribution of sectoral shocks

to aggregate volatility is small and is of the same magnitude as in the case of statistical

factor analysis.

KEYWORDS : Aggregate �uctuations, idiosyncratic shocks, networks, shock di�u-

sion
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1 Introduction

It is one of the oldest debates in economics whether idiosyncratic shocks to individual sec-

tors can generate aggregate volatility in the economy. Beginning with Lucas (1977), who

argued that such shocks to individual sectors would die down in the aggregate economy due

to diversi�cation, this topic has been analyzed further in large number of papers. With

the development of new tools that are available to analyze networks now, there has been a

renewed interest in revisiting this old question. This debate has been carried forward in the

recent paper by Acemoglu et al. (2012) who use a network argument to show that in the

presence of input-output linkages, small idiosyncratic shocks can generate aggregate �uctua-

tions depending on the structure of the production network. According to their argument, it

is possible to generate such aggregate volatility from idiosyncratic shocks if the input-output

network is highly asymmetric and a few big sectors provide input to a large number of other

sectors.

Most of the papers with argument in favor of network hypothesis for aggregate �uc-

tuations have a production framework where the productivity shocks propagate contempo-

raneously through the whole economy in just one period. Due to the static nature of the

production setup the general equilibrium e�ects create a feedback loop in the model which

allows to generate big �uctuations on the aggregate level. This raises the question- do sectors

really react contemporaneously to productivity shocks in other sectors?

In the �rst half of the paper, I provide empirical evidence against it in two ways. First,

I give macro evidence from production data at the sectoral level. It is well documented that

di�erent sectors in economy have di�erent production horizons and there is a signi�cant

time lag between initialization and completion of any production process. For example-

Humphreys et al. (2001) discuss the importance and heterogeneity of input inventories across

sectors. The heterogeneity of input inventories across sectors itself speaks volume about

di�erence in production horizon. This idea is also captured in the supply chain management
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and inventory literature by the concept of lead time (time taken between initiation and

completion of an order). It highlights the presence of some kind of friction in the sectoral

production system which takes us away from the contemporaneous production function.

But does production horizon have an impact on output adjustment? Figure 1 shows the

response of durable and non-durable goods sector post Lehman bankruptcy. The non-durable

goods have a lower lead time and their production can be adjusted quickly compared to the

durable goods. We can clearly see that the non-durable goods sector reacted sharply to this

episode and hit its lowest level in four months while the durable goods sector took much

longer to cut its production (it took more than a year before the shipments and inventory

level of durable goods touched their lowest level). This example documents reaction of two

sectors with di�erent production horizons to an aggregate level shock, but nonetheless shows

heterogeneity in their response time.

I then provide more causal evidence using micro level data. I use �rm level data and

ask the question- do �rms in di�erent sectors react at di�erent rates in response to a shock

to their suppliers? To generate exogenous shocks at the supplier level, I use information

on major natural disasters in the US as in Barrot and Sauvagnat (2016). These events can

generate large short term impact on the sales of a�ected �rms, which can then trickle down

and a�ect the sales of their customers. Thus, it can be used to study propagation of shocks

in downstream �rms. In contrast to Barrot and Sauvagnat (2016), I estimate the impact

of these shocks separately for each sector to understand if sectors di�er fundamentally from

each other in their response rate. I �nd that 1) none of the sectors react contemporaneously

to the shocks and 2) there is a heterogeneity across sectors in their reaction time.

In the second half of the paper, I develop a multi-sectoral model with production linkages

to study the contribution of sectoral shocks to aggregate �uctuations. Based on the empirical

evidence, I add the feature of heterogeneous production horizon for di�erent sectors in the

model. I show that a model with di�erent production horizons is su�cient to generate

di�erent di�usion rates across sectors. Now a shock to a given sector i in time period t
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Figure 1: Reaction of durable and non-durable sectors after Lehmann bankruptcy (shown
by vertical line). Non-durable goods have a smaller lead time compared to durable goods
and adjusted quickly.

a�ects its downstream sectors at di�erent periods of time and thus the chances of sector i

generating aggregate volatility goes down. However, what kills the ampli�cation channel is

not shock di�usion on its own but the heterogeneity in di�usion rate across sectors i.e. if

sectors j and k react at di�erent times for a period t shock in sector i.

In terms of di�usion, the model presented here also generalizes the model presented in

Long and Plosser (1983) as a one period di�usion model and Acemoglu et al. (2012) as a zero

period di�usion model. As far as I know, all the recent papers with production networks are

either zero or one period di�usion models. Since both these models have equal di�usion rate

for all sectors, they are more likely to generate aggregate �uctuations from sectoral shocks.

Finally, I use the di�usion adjusted model to decompose the contribution of sectoral vs

aggregate shocks in the aggregate �uctuations in US industrial production (IP) data (similar

exercise as in Foerster et al. (2011)). I �nd that sectoral shocks now contribute only 27%

to the aggregate �uctuations unlike other recent papers with production linkages, which

document a much larger contribution. Accounting for unequal di�usion rates across sectors

decreases the contribution of these shocks to aggregate volatility.
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The paper is related to both theoretical and empirical papers in the production networks

literature and its application to understanding the granular origins of aggregate �uctuations.

In the case of Gabaix (2013) and Carvalho and Gabaix (2013), aggregate �uctuations are

caused by large �rms which contribute disproportionately both to aggregate output and

aggregate �uctuations. On the other hand, Long and Plosser (1983), Bak et al. (1993),

Horvath (1998) and (2000), Conley and Dupor (2003), Acemoglu et al. (2012) and Atalay

(2013), generate aggregate �uctuations through sectoral inter-linkages. The empirical evi-

dence on contribution of network linkages to generate aggregate �uctuations is provided in

Di Giovanni and Levchenko (2010), Foerster et al. (2011) and Barrot and Sauvagnat (2016).

While the above mentioned papers have studied propagation of shocks through the pro-

duction network, they have not focused on sectoral heterogeneity in terms of di�usion of

shocks. The sectoral heterogeneity in these papers is either on how big the sector is (if net-

work structure is taken as given) or the position of a given sector in the production network.

In contrast, this paper shows that di�erent sectors can be heterogeneous in their reaction

time to shocks as well (a slightly di�erent di�usion concept is prevalent in the network lit-

erature on study of di�usion of technology in a population, see Jackson (2005)). I provide

empirical evidence for this heterogeneity in di�usion rates across sectors and show how to

embed it in a network model. I �nd that inclusion of di�usion can signi�cantly change the

results on ampli�cation potential of sectoral shocks in generating aggregate volatility.

The rest of the paper is organized as follows. In section 2, I present the empirical evidence

in favor of heterogeneity of response rate of sectors to shocks in upstream sectors. Section

3 and 4 present models on production network and show how to introduce the concept of

di�usion rate and connect it with other papers in the literature. The models are used to

highlight the diversi�cation impact of unequal di�usion over time on aggregate volatility. The

di�usion adjusted model is �nally taken to the data in section 5 to evaluate the contribution

of sectoral shocks to aggregate �uctuations. Finally section 6 concludes.
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Figure 2: Average lead time across sectors (3-digit NAICS)

2 Di�usion in the data

2.1 The Macro Evidence

This idea of heterogeneous production horizon is captured in the supply chain management

and inventory literature by the concept of lead time. The lead time for a given sector is the

duration between conception and completion of a production process. The data counterpart

of lead time is the ratio of unful�lled shipments to value of shipments every month (source:

M3 database of US census). For eg. a ratio of 1 gives a lead time of one month, which is

equivalent to saying that it takes one month to complete the production after receiving an

order.

The Figure 2 shows the density plot of average lead time for di�erent sectors at the

3-digit NAICS level (monthly average lead time for the period 1991-2008). We can clearly

see from the above �gure that the average production horizon for sectors is approximately

ten weeks, however there are a large number of sectors which plan their production in much

advance. Thus lead time provides a good evidence for non-contemporaneous production

decision making across sectors. This leads to our next question- if the production decisions
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Figure 3: Reaction of various sectors after Lehmann bankruptcy

are non-contemporaneous, does it also lead to heterogeneity in the shock propagation across

sectors?

To test this, the best way is to isolate sector level shocks and look at their impact on

downstream sectors. However, it is di�cult to isolate pure sectoral shocks which in turn

makes it di�cult to test their di�usion through the network. We instead use an aggregate

shock, the Lehman bankruptcy (beginning of the Great Recession), and see how sectors

adjusted to this common exogenous shock. Since sectors react to both aggregate and sectoral

shocks, even an aggregate level shock will allow us to test for heterogeneity in reaction

horizons across di�erent sectors.

The sectoral reaction post the Lehman bankruptcy is shown in Figure 3. The �gure has
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time period on the x-axis and value of shipments and inventory (USD million) on the y-axis

for 9 di�erent sectors 1. We can clearly see that some sectors reacted immediately and cut

down on their production thus reducing the level of shipments and inventory (for example

consumer non-durables). On the other hand, sectors like consumer durables took almost

an year to hit their lowest production levels. This clearly shows a heterogeneity in reaction

horizon of sectors. What makes these results even more stark is the fact that the common

shock in this case was known to everyone and big in magnitude, still the sectoral reaction

was spread out over one year. In case of small magnitude sectoral shocks, the di�erence in

reaction to upstream sectoral shocks can be even more pronounced, since the information on

technological shock will be hard to gather.

Now we can tie together the two facts mentioned above and ask whether lead time

explains the reaction horizon of sectors post the Lehman bankruptcy? In Figure 4, we give

the scatterplot between lead time and the time it took to hit the lowest shipments plus

inventory level after September 2008 at 3-digit NAICS sector level. Figure 4 shows that

there is a positive and signi�cant correlation between the two, which shows that on average

the sectors which have higher lead time took longer to adjust post the Lehman bankruptcy

announcement.

If all the sectors had reacted contemporaneously, the impact would have been much

higher on the aggregate manufacturing output right after September 2008. However, the

di�erence in production horizon (and thus the reaction horizon) across sectors cushioned the

impact on the aggregate manufacturing output. It is however important to mention here that

most sectors did react immediately after the aggregate shock, but only a few managed to

completely adjust within a few months, while others took much longer. Thus, it is necessary

to use more micro level shock to uncover di�usion channel.

1After a negative shock, sectors should run down current inventories for current shipments. The failure to
run down inventories implies failure to cut down production. Hence it is best to use shipments plus inventory
level to capture the reaction horizon of sectors.
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Figure 4: Scatterplot between lead time and time it took to reach minimum Shipments plus
inventory after September 2008. Each dot represents a sector at 3-digit NAICS level.

2.2 The Micro Evidence

The macro evidence provided above shows that sectors indeed reacted di�erently after the

Lehmann bankruptcy. This evidence in favor of shock di�usion in a network economy is

however based on an aggregate level shock which could have impacted the sectors in more

than one way (and not just through input-output linkages). Thus there is a further need to

strength this evidence using micro level shocks.

In this section, I build on the work of Barrot and Sauvagnat (2016) to document the

heterogeneity in response time at sectoral level after idiosyncratic shocks hit the input sup-

pliers. The idea is to use natural disasters as an exogenous shock at the �rm level. Using

this exogenous shock, one can then look at the output response of �rms downstream to the

�rm impacted by a natural disaster. Using this methodology, Barron and Sauvagnat (2016)

show that sales of �rms indeed take a hit after a natural disaster hits one of their supplier

�rms.

Identi�cation Strategy : The same methodology (Barrot and Sauvagnat (2016)) can be

augmented to �nd evidence for sectoral level heterogeneity in di�usion rate of shocks. If
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di�erent sectors react at di�erent time horizons after shock to their inputs, then it should

also be re�ected in the behavior of �rms that compose these sectors. We use the following

regression:

4Salesis,t,t−4 = α +Στ=0
τ=−5βsτHitsF irmis,t−τ +Στ=0

τ=−5γsτHitsOneSupplieris,t−τ

+ ηis + πts + εist (2.1)

where 4Salesis,t,t−4 is the sales growth for �rm i in sector s between quarter t and t−4.

HitsF irmis,t−τ is a dummy variable which takes value 1 if �rm is hit by a natural disaster

in quarter t− τ , while HitsOneSupplieris,t−τ is a dummy which takes value 1 if one of the

supplier of this �rm is hit by a natural disaster in t − τ . A �rm is classi�ed as hit by a

natural disaster if it is located in a county a�ected by natural disaster. Finally, ηis and πts

control for �rm �xed e�ects and quarter-year �xed e�ects. The coe�cient of interest here is

γsτ , which if negative and signi�cant will imply that if a natural disaster hit a supplier in

quarter t− τ , it will impact the sales growth negatively for �rm i in sector s at time t.

The speci�cation in equation 2.1 is the same as used by Barrot and Sauvagnat (2016)

with one important di�erence. It is estimated separately for each sector s instead of jointly

for all sectors. The main goal for their paper was to show that shocks to input suppliers

a�ect sales in downstream �rms. On the other hand we are interested in �nding out the

heterogeneity in reaction horizon of �rms in di�erent sectors after a shock hits their suppliers.

For example- if only γa1 is the signi�cant and negative coe�cient for sector a and only γb2

is the signi�cant and negative coe�cient for sector b in regression 2.1, it means that sector

a has a smaller reaction horizon (equal to 1 quarter) than sector b (equal to 2 quarters).

For the identi�cation to work, several assumptions are needed. First, the parallel trends

assumption should hold i.e. �rms' sales growth should be �at when the disaster has not hit

any of its supplier. Second, the natural disaster should have an impact on a given �rm only
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through the impact on its suppliers (disruption of inputs). The biggest worry here can arise

from the presence of secondary plants of the customer �rm being themselves present in a

disaster hit county. We correct for it by dropping �rms when customer-supplier headquarters

are within a distance of 300 kms2.

One of the concerns while estimating equation 2.1 is that if �rms can substitute their

inputs from other suppliers, one would not see any impact on sales growth. However, the

signi�cant results of this exercise will only prove the impact of such shocks. An important

reason why we see the impact of these shocks on customers is because we use the data on

publicly listed �rms in US, which are some of the biggest �rms in US3. A natural disaster

hitting such �rms can potentially knock out a signi�cant portion of the aggregate supply

from the market (lead time analysis from previous section also implies that it should be

di�cult to immediately replace any such supply disruption). This explains why equation

2.1 is able to �nd traction in the data. It also implies that the speci�cation is robust for

inferring sectoral di�usion rate of shocks because any shock to a supplier can be inferred as

a partial sectoral shock.

Data Description: There are three primary datasets needed for this exercise- �rm �nan-

cial information, �rm level network linkages and natural disasters. We use Compustat North

America Fundamentals Quarterly database for �rm level information, both �nancial data,

headquarter information and �rm level network. The sample is restricted to non�nancial

�rms whose headquarters are located in the United States over the 1978�2013 period. We

estimate the equation 2.1 for ten manufacturing sectors. The same dataset also provides

information of �rm level linkages. The regulation SFAS No. 131 requires �rms to report any

customer relationship accounting for more than 10% of sales. Finally, the data on natural

disasters is collected from SHELDUS (Spatial Hazard and Loss Database for the United

States) database maintained by the University of South Carolina. I use the same set of

2See Barrot and Sauvagnat (2016) for detailed discussion on these identi�cation issues
3As shown in Gabaix (2011), the 100 largest �rms themselves account for one-third of the aggregate

�uctuations in US economy.
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Figure 5: Distribution of reaction horizon by sectors

41 natural disasters as used by Barrot and Sauvagnat (2016) in order to keep our results

comparable.

Results : The summary of results for sector level regressions based on equation 2.1 is

shown in Figure 5. For each sector, we only consider the most important and signi�cant

coe�cient γsτ . If in a sector s, γs2 is the most negative and signi�cant coe�cient, then in

this sector �rms are a�ected only τ = 2 quarters after the shock hits their suppliers. Figure 5

reports that there are a total of three sectors which get impacted two quarters after a shock

to their suppliers, four sectors which get impacted after three quarters and three sectors

which get impacted after �ve quarters.

The results in Figure 5 immediately prove two things. First, none of the sectors react

contemporaneously or even one quarter after a shock hits their suppliers. Second, there

is a heterogeneity in rate of response of di�erent sectors. Since the evidence is based on

idiosyncratic shocks (exogenous due to natural disaster), it gives a causal evidence for het-

erogeneity in di�usion rate of shocks through sectors. In the next section, I will now present

a model of input-output production economy which incorporates these �ndings and �nd the

implications of sectoral shocks for aggregate economy.
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3 Di�usion: Two canonical models

The phenomenon of shock di�usion can be illustrated by comparing two basic models which

have been used frequently and interchangeably in the literature. The �rst class consists of

models where shocks di�use in the same period and a�ect other sectors contemporaneously.

This in turn impact their own production decision in the same period and generate a feedback

loop. I would call these models as zero period di�usion (0PD) models. Some of these models

are presented in Carvalho (2008), Acemoglu et al. (2012), Dupor (1998) etc. The second

class consists of primarily one period di�usion (1PD) model as presented in Long and Plosser

(1983) where �rms use inputs from the previous period for production.

In this section, I would present the basic and comparable 0PD and 1PD models as presented

in Carvalho (2008) and Long and Plosser (1983). I would then use these models to highlight

the di�erence in contribution of network interconnectivity to aggregate volatility that one

can generate from considering the speed of di�usion of shocks.

3.1 0PD- Acemoglu et al. (2012)

Consider a multisector economy consisting of N di�erent sectors indexed by i = 1, .., N .

Each sector i produces a di�erent good of quantity Yit at date t using labor Lit and input

Xijt from other sectors j = 1, .., N . The Cobb-Douglas production technology used for

production is given by:

Yit = ZitL
α
it

N∏
j=1

X
(1−α)γij
ijt (3.1)

4Zit = log(εit), εit ∼ N(0, σi) (3.2)

13



where Zit is the productivity shock to sector i in period t. 4Zit is log-normal and i.i.d

across sectors and time unless otherwise stated. Xijt is the input from sector j used in the

production by sector i.

The production linkages provide the source of interconnectedness between the sectors

and is present in the exponent γij ≥ 0. This inter-sectoral connectivity can be completely

captured by N ×N matrix Γ = [γij]N×N where element ij corresponds to the share of input

j for production in sector i. This matrix Γ would be referred to as input-output matrix

in the rest of the paper. For now I assume that share of labor α ∈ (0, 1) in production is

constant across all sectors. The column sums of Γ capture the importance of a sector as an

intermediate input for production in other sectors. This is de�ned as weighted out-degree

in Acemoglu et al. (2012). I further assume that the production functions exhibit constant

returns to scale which is captured by:

Assumption (A1):
N∑
j=1

γij = 1, for all i = 1, .., N

On the consumption side there is a representative agent who derives utility by consuming

the above mentioned N goods produced in the economy and supplies one unit of labor

inelastically. The utility of this agent is given by:

U(C) = Et

∞∑
t=0

βt
N∑
i=1

θilnCit (3.3)

N∑
i=1

θi = 1 and θi > 0,∀i (3.4)

Since, there is no inter-temporal decision making involved in production, the above

problem can be solved as a set of static problems corresponding to each time period, t.

Finally, we can close the model by de�ning the set of resource constraints:
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N∑
i=1

Lit = 1 (3.5)

Cit+
N∑
j=1

Xjit = Yit ,∀i = 1, .., N (3.6)

Let yit = log Yit and yt be the vector of log sectoral output. Then, Acemoglu et al(2012)

show that the competitive equilibrium of the above economy can be given by:

yt = µ0 + [I − (1− α)Γ]−1 zt (3.7)

where µ0 is a N-dimensional vector of constants depending on the model parameters.

Since, we are interested in aggregate growth volatility we can look at:

4yt = [I − (1− α)Γ]−1 εt (3.8)

Using the fact that all eigenvalues of (1− α)Γ are strictly less than one, we can express

the above equation as a power series:

4yt =

[
∞∑
k=0

[(1− α)Γ]k
]
εt ≈ [I + (1− α)Γ] εt (3.9)

I have ignored the second order interconnections in the above equation because it would

make it easier to compare it with one period di�usion model. Although it is well documented

that in a network economy second order interconnections can also matter. As I will show

later, the ignored second order terms would be present in case of 1PD model as well, so we
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do not loose much in terms of comparison. Using the above equation, Acemoglu et al(2012)

later show how aggregate volatility of economy would depend on weighted out-degree of

sectors. This captures the relative importance of a sector as input to all other sectors. Given

a fat-tailed distribution of weighted out-degrees one will obtain that aggregate volatility does

not decay at rate
√
n. For now, lets look at the aggregate volatility from a practical point

of view:

V ar0PD(4yt) = Σεε + (1− α)2ΓΣεεΓ
′ + (1− α)ΣεεΓ

′ + (1− α)ΓΣεε

Since we are interested in aggregate volatility, we can use an aggregate statistic:

V ol0PD(4y) =
1

N2
1′V ar0PD(4yt)1 (3.10)

This aggregate volatility statistic is based on giving equal weight to all sectors, but it is

possible to use a more realistic weighted measure when taking the model to the data. For

volatility analysis, this statistic has been used frequently in the literature (see Horvath, 1998,

or Dupor, 1999 or Carvalho, 2008). But comparison of the 0PD and 1PD model would be

the same even if we were to consider any other sectoral weights.

3.2 1PD- Long and Plosser (1983)

The 0PD model is very similar to the classic Long and Plosser (1983) model. Now, the

production in sector i in period t depends on the inputs purchased in period t − 1. The

production is given by:

Yit = ZitL
α
it−1

N∏
j=1

X
(1−α)γij
ijt−1 (3.11)
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The problem of the representative household remains the same as in the previous 0PD

model. The resource constraint also remains the same except that the input Xijt from sector

j to i is used for production in period t+ 1:

Cit+
N∑
j=1

Xjit = Yit ,∀i = 1, .., N (3.12)

We can again denote the log sectoral output as yt and solve for planner's problem. Long

and Plosser (1983) show that the solution to planner's problem is given by:

yt = µ1 + (1− α)Γyt−1 + zt (3.13)

where µ1 is a N-dimensional vector of constants depending on the model parameters.

Since, we are interested in aggregate volatility we can work with demeaned output:

4yt = [I − (1− α)ΓL]−1 εt (3.14)

where L is the lag operator. We can again express the above equation as a power series:

4yt =

[
∞∑
k=0

[(1− α)ΓL]k
]
εt ≈ [I + (1− α)ΓL] εt = εt + (1− α)Γεt−1 (3.15)

Similar to 0PD model, now we can write sectoral and aggregate volatility terms for 1PD

di�usion model:
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V ar1PD(4yt) = Σεε + (1− α)2ΓΣεεΓ
′

V ol1PD(4y) =
1

N2
1′V ar1PD(4yt)1 (3.16)

One key point to di�erentiate 1PD model from 0PD is the timing for usage of inputs. In

0PD model, the shock from sector i immediately propagates to other sector and then a�ects

sector i production through general equilibrium e�ect. This generates a feedback loop and

ampli�cation of shocks. In 1PD model on the other hand, shocks do a�ect other sectors but

only with a lag of one period due to the time constraint on production. Now a shock to a

sector i has a contemporaneous e�ect on itself but only a lagged one on all others, therefore

there is no feedback from the other sectors to the sector i and in turn again on other sectors.

This partially closes down the ampli�cation channel as present in 0PD model.

It is a common practice to treat all these models interchangeably but as shown above

they are very di�erent in their ampli�cation potential. This point has been ignored in other

papers where the models can have extended framework involving capital and labor but inputs

are produced and used in the same period. For eg. the model in Horvath (1998) solves in�nite

horizon problem for the social planner but still uses inputs produced in the same period.

The output dependence on previous period comes only through the capital market. In terms

of production linkages it is still a 0PD model and allows for contemporaneous feedback and

ampli�cation of shocks in production. On the other hand, the 1PD model uses inputs from

previous periods and do not allow contemporaneous ampli�cation of shocks through network

structure.
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3.3 0PD vs 1PD models

Proposition 1: The aggregate volatility in case of 0PD model is always higher than 1PD

model:

V ol0PD(4y) > V ol1PD(4y) (3.17)

The result here follows directly from the de�nition of aggregate volatility for the two

models. The result will hold even if we include higher order terms in the power series

expansion due to the fact that 0PD model will always include the volatility terms present

in 1PD model. The reason for di�erent aggregate volatility is due to production lag in case

of 1PD model which leads to dropping out the variance term involving cross product of εt

and (1−α)Γεt−1. Under the assumption of no auto-correlation of shocks across sectors, this

cross product term is completely dropped out. But the result would hold even if there is

small auto-correlation between shocks over time.

De�nition : Network contribution to aggregate volatility (NC) is the fraction of volatility

contributed by the terms involving network structure parameters. It can be de�ned

as:

NC = 1− 1′Σεε1

V ol(4y)
(3.18)

Network contribution is an important metric because it shows the importance of inter-

sectoral linkages in generating aggregate volatility. If there were no intersectoral linkages,

the aggregate volatility will just be the sum of sector level variances and is captured by the

term 1′Σεε1. The other terms in aggregate volatility contain Γ, which captures the increase

in aggregate volatility due to inter-sectoral linkages.
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Proposition 2: The network contribution to aggregate volatility is always higher for 0PD

model:

NC0PD > NC1PD (3.19)

Proof: The result follows directly from proposition 1. Since, the non-network term, 1′Σεε1

in aggregate volatility is the same for both 0PD and 1PD models and aggregate volatil-

ity is higher for 0PD model. So we get:

1′Σεε1

V ol0PD(y)
<

1′Σεε1

V ol1PD(y)
(3.20)

3.4 Irrelevance of higher order di�usion process

The 1PD Long and Plosser (1983) model can be written similarly for a n-period di�usion

model, with production lag of n periods. This model would seem to correspond to a slower

rate of di�usion of shocks in the economy. But any such model would have no fundamental

di�erence with 1PD model in terms of aggregate volatility. This can be summarized by:

De�nition : The vector of sectoral growth rates for an n-period di�usion model will be

given by:

4yt = [I − (1− α)ΓLn]−1 εt ≈ εt + (1− α)Γεt−n (3.21)

Proposition 3: The aggregate volatility or NC do not depend on production lag i.e.:
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V ol1PD(4y) = V ol2PD(4y)... = V olnPD(4y) (3.22)

NC1PD(4y) = NC2PD(4y)... = NCnPD(4y) (3.23)

The above proposition shows that all production lags give the same value for aggregate

volatility as well as the network contribution to aggregate volatility. This follows from the

fact that demeaned output vector depends on two terms; current shock, εt and a lagged

shock, εt−n times the network term (1 − α)Γ. In terms of di�usion process the nPD is no

di�erent than 1PD because period, t output only depends on lagged output from one other

period. In case of 1PD, this input comes from period t − 1 and in case of nPD it comes

from t − n. So it does not have any additional dampening e�ects. In contrast if sectors

were allowed and �nd it optimal to smoothen their response to shock from period t− n for

n periods, then the results could be di�erent.

But at the same time, the above proposition also highlights the di�erence between con-

temporaneous production process as in 0PD model and a lagged production process in any

nPD model. So for the case where �rms are not allowed to smoothen their response over n

periods, proposition 3 would apply and considering a production processes with more than

one period lag will not change any results. For all practical purposes, one can use 0PD and

1PD models to highlight the di�erence caused by di�usion rate.

4 Model: Unequal di�usion rate (UDR)

Since di�erent sectors have di�erent production horizons, it makes sense to study a model

where all sectors do not react to shocks at the same time. As discussed in the introduction

and explained through �gure 2, average lead time varies signi�cantly for di�erent sectors and
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determines their production horizon. The sector with small production horizon would buy

its input just preceding production, while another sector with a longer production horizon

might contract its inputs multiple periods before production can begin.

This di�erence in production horizon would create a di�erence in how sectors react to

shocks. A sector with longer production horizon would react with a delay to the shock to

its upstream sectors. Consider a sector which buys its inputs in period t− 2 for production

in period t. Since the sector is unable to tinker or change its production quickly, the shock

to its supplier in period t − 2 can a�ect it only in period t. In comparison, a sector which

purchases its input in period t− 1 for production in period t would react in period t if there

is any shock to its suppliers in period t− 1. In a multi-sector setting this would lead to slow

di�usion of shocks through a sector with longer production horizon. Thus a multi-sector

model with sectors having di�erent production horizons would generate unequal di�usion

rate of shocks in di�erent parts of the economy.

4.1 3-sector economy

Consider a 3-sector model with the restrictions discussed above. The setting is similar to

Long and Plosser (1983) with one change. Sector 1 and 2 have a small production horizon

and use inputs from period t − 1 for production in period t. On the other hand, sector 3

has a longer production horizon and uses inputs from period t− 2 for production in period

t. The production in the economy is given by:

Yit = ZitL
α
it−1

N∏
j=1

X
(1−α)γij
ijt−1 ∀i = 1, 2 (4.1)

Y3t = Z3tL
α
3t−2

N∏
j=1

X
(1−α)γij
3jt−2 (4.2)
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where Zit is the productivity shock to sector i in period t and εt is log-normal and i.i.d.

as before. The representative agent wants to maximize life-time utility and his per period

utility is given by:

U(Ct) =
N∑
i=1

θilnCit (4.3)

The restrictions on the utility are same as in section 2. The resource constraint is also

same, except that now sector 3 buys input in period t and uses it in period t+ 2:

Cit+
N∑
j=1

Xjit = Yit ,∀i = 1, .., N (4.4)

Now, we can solve the planner's problem for this economy. The planner wants to max-

imize the expected lifetime utility of the agent subject to production functions given in

(3.1) and (3.2), resource constraint (3.4) and labor market clearing conditions. This can be

expressed as a value function problem:

V (St) = max {U(Ct) + βV (St+1|St) (4.5)

where St = (Yt, Zt) is the set of state variables. This problem can be solved by �guess

and verify�, which gives the following solution:

V (St) = k1ln Y1t + k2ln Y2t + k3ln Y3t+1 + J(Zt) +K (4.6)

where ki is a set of constants given by:
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ki = θi + β

3∑
j=1

kjγji, ∀i = 1, 2, 3 (4.7)

J(Zt) depends on production uncertainty parameters while K is also constant and do

not depend on Yt or Zt. This �nally gives us the consumption and input quantities at time

t as given in the appendix.

Given the solution above, we can now focus on output in di�erent sectors. It would help

us compare the solution obtained here with that in the previous section. The log output for

unequal di�usion rate (UDR) model is given by:

y1t = µudr1 + (1− α) [γ11y1t−1 + γ12yt−2 + γ13yt−3] + z1t (4.8)

y2t = µudr2 + (1− α) [γ21y1t−1 + γ22yt−2 + γ23yt−3] + z2t (4.9)

y3t = µudr3 + (1− α) [γ31y1t−1 + γ32yt−2 + γ33yt−3] + z3t (4.10)

where µudr terms are constants that depend on model parameters. The above solution

can be better summarized in matrix form below:

yt = µudr + (1− α) [Γ1yt−1 + Γ2yt−2] + zt (4.11)

4yt = (1− α) [Γ14yt−1 + Γ24yt−2] + εt (4.12)

where
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Γ1 =


γ11 γ12 γ13

γ21 γ22 γ23

0 0 0

 and Γ2 =


0 0 0

0 0 0

γ31 γ32 γ33

 (4.13)

Γ = Γ1 + Γ2 (4.14)

The above equation 4.11 captures the dynamics of the economy. The input-output matrix

Γ still governs how sectoral outputs a�ect future production but it now gets split up in two

matrices Γ1 and Γ2. Sectors 1 and 2 which have a production horizon of 1 period gets directly

a�ected through Γ1 where subscript 1 corresponds to 1-period production horizon. Sector

3, since it has a di�erent production horizon of 2 periods gets directly impacted through Γ2

from shocks that hit the economy in period t− 2.

4.2 n-sector economy

Given the mechanism in the last sub-section we can easily get a reduced form solution for

any n-sector economy with production linkages. Any such economy where sectors can have

up to p-periods of production horizon will have a solution of VAR(P) form given by:

yt = µudr + (1− α) [Γ1yt−1 + ...+ Γpyt−p] + zt (4.15)

4yt =
[
I − (1− α)

[
Γ1L + ...+ ΓPL

P
]]−1

εt (4.16)

4yt ≈
[
I + (1− α)

[
Γ1L + ...+ ΓPL

P
]]
εt (4.17)
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Γ = Γ1 + ..+ ΓP (4.18)

The solution to n-sector and P period production horizon economy has an easy reduced

form as shown in equation 4.15. Since the economy now has sectors with P di�erent pro-

duction horizons, the input-output matrix Γ gets split up into P components.

4.3 1PD vs UDR models

Proposition 4: The aggregate volatility in case of 0PD and 1PD models is always higher

than UDR model:

V ol0PD(y) > V ol1PD(y) > V olUPR(y) (4.19)

Proof: It follows from the de�nition of V ol1PD(y) and V olUDR(y)as below:

V ol1PD(y) =
1

N2
1′
[
Σεε + (1− α)2ΓΣεεΓ

′]1

=
1

N2
1′
[
Σεε + (1− α)2 [Γ1 + ..+ Γp] Σεε [Γ1 + ..+ Γp]

′]1

>
1

N2
1′
[
Σεε + (1− α)2

[
Γ1ΣεεΓ

′
1 + ..+ ΓpΣεεΓ

′
p

]]
1 = V olUPD(y)

This proposition establishes the decreases in aggregate volatility caused due to unequal

di�usion rates over di�erent sectors. The unequal di�usion rates spread the impact of a shock

to sector i in period t across di�erent periods for its di�erent downstream consumers. It is

essential for all the downstream sectors to react contemporaneously to one shock to generate

substantial aggregate volatility. But unequal di�usion rates close down this ampli�cation

channel and do not allow for contemporaneous reaction for all sectors. I will further show in
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next sub-section below how this addition of time dimension to shock propagation can a�ect

asymptotic properties.

The mechanism is better explained by looking at �gure 6. Sector 1 is the only input

supplier in the economy and supplies to all other sectors in the economy. The upper half

of the �gure corresponds to 1-period di�usion model. Here, a shock hits sector 1 in period

t and then a�ects all the downstream sectors together in period t + 1. Now compare this

to the bottom half of the �gure which represents an unequal di�usion rate economy where

sectors 2 and 3 buy their input with 1 period production lag while 4 and 5 buy with 2

period production lag. In this second economy, the shock to sector 1 a�ects di�erent parts

of economy at di�erent times. Thus on the aggregate the contribution of this shock that

hits sector 1 in period t to aggregate volatility is diminished as all sectors do not react at

the same time. So, even if a sector is supplier to a large number of downstream sectors its

impact on aggregate volatility is diminished due to this spread of shock over time.

Proposition 5: The network contribution to aggregate volatility is also lower for UDR

model:

NC0PD(y) > NC1PD(y) > NCUDR(y) (4.20)

Proof: The result follows the proof as given in Proposition 2.

Since the aggregate volatility goes down in case of UDR model, it also has a negative

impact on network contribution to aggregate volatility. The diversi�cation of the impact of

period t shocks over time leads to smaller ampli�cation of shocks due to network. This in

turn decreases the contribution of network structure to aggregate volatility.
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Figure 6: Shock propagation through the economy. Blue color correspond to sectors currently
a�ected by shock that hit sector 1 in period t.
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4.4 Asymptotic properties

De�nition : Di�usion adjusted out-degree of a sector is the weighted out-degree measure

adjusted for di�usion:

dpi =
n∑
j=1

wpji where wpji ∈ Γp (4.21)

The adjusted out-degree, dpi measures the contribution of sector i as an input for period

t production in other sectors which use input factors from period t − p. This adjusted

out-degree is closely related to the weighted out-degree measure, di:

dpi ≤ di ∀p, i (4.22)

P∑
p=1

dpi = di ∀i = 1, .., N (4.23)

So, in an economy populated by sectors with P di�erent production horizons, we would

have P × N adjusted out-degree measures, dpi, corresponding to lag p and sector i. The

above two equations 4.22 and 4.23 follow directly from the fact that input-output matrix

Γ = Γ1 + .. + ΓP . Since dpi ≤ di, it highlights the fact that sector i can be a big input

supplier in the whole economy, but if sectors have di�erent production horizons, on average

the contribution of sector i production in period t an an input to other sectors can be small

in subsequent periods. Thus unequal di�usion rate forces us to make the distinction between

weighted out-degree, di and adjusted out-degree, dpi.

Assumption 2(A2): The sectoral growth volatility is same across all sectors i.e. σi =

σ ∀i = 1, .., N .
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The asymptotic results can be shown to hold for any general case where the sectoral volatility

σi are bounded above by a �nite constant. Here I have considered a simple case for illustration

purpose, but can be extended as in Acemoglu et al (2012). Given assumption 3 we can now

write:

Proposition 6: Under A3 and considering �rst order-interconnections the volatility for

di�erent di�usion models can be given by:

V ol0PD(4y)1/2 = V ol1PD(4y)1/2 = Ω

 1

n

√√√√ n∑
i=1

d2i

 (4.24)

V olUDR(4y)1/2 = Ω

 1

n

√√√√ n∑
i=1

P∑
p=1

d2pi

 (4.25)

If a few sectors provide large fraction of input supplies in the economy, this asymmetry

between sectors can force the aggregate volatility to decay at a rate slower than
√
n. As shown

in Acemoglu et al (2012), a heavy tailed distribution for di is enough to show that aggregate

volatility decreases at a rate slower than the usual diversi�cation argument. This result is

reiterated in equation 4.24, where the zero-period output growth volatility is bounded below

by average sum of squares of weighted out-degree, di. In contrast for an economy with

unequal di�usion rates, the volatility has a di�erent lower bound given by average sum of

squares of adjusted weighted out-degree, dpi.

Thus the above proposition establishes the di�erence in asymptotic properties that can

arise depending on whether we consider shock di�usion in the economy or not. Depending on

the distribution of di and dpi, these two economies can have di�erent decay rates for aggregate

volatility. So, when we take unequal di�usion rates for di�erent sectors into consideration

it can possibly change the asymptotic properties of aggregate volatility in the economy.

Also given equation 4.23, we know that the sum of dpi over p periods is equal di. Given
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su�cient di�erence in di�usion rates across sectors, this could imply a substantial di�erence

in distributions of di and dpi. If dpi turns out to be not so heavy tailed, then sectoral shocks

would fail to generate aggregate volatility.

Another important implication of the above proposition is that input-output matrix is

no longer a su�cient statistic for characterizing the role of idiosyncratic sectoral shocks in

generating aggregate volatility. The aggregate volatility now depends on dpi which in turn

depends on both input-output structure and di�usion rate across sectors. It is possible to

get the empirical counterpart of the above measure dpi. The input-output matrix is usually

available from national accounts, while lead time indicator can be used as a proxy for di�erent

production horizon or di�usion rate of sectors.

5 Sectoral shock decomposition

In this section, I do similar exercise as performed in Foerster, Sarte and Watson (2012) and

use factor methods to decompose the industrial production (IP) into components arising

from aggregate and sector speci�c shocks. I use structural factor analysis and see how

incorporation of di�usion channel into multi-sector growth model attenuates the contribution

of sector speci�c shocks to aggregate volatility.

5.1 Di�usion Adjusted Outdegree distribution

In this section, we do the same exercise as in Acemoglu et al. (2012) and look at the out-

degree distribution in the context of US economy. The di�erence in this case is that we also

plot the out-degrees after accounting for di�erent di�usion rates of di�erent sectors. The

di�usion rates are proxied by lead time of di�erent sectors. Since the di�erent sectors in

economy have di�erent production horizons, there is a time lag between initialization and

completion of production and this is captured by lead time indicator. The di�erent lead
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Figure 7: Distribution of di�usion adjusted out-degrees for di�erent lead-time cuto�s

times for di�erent sectors can be inferred from the Figure 2 in the introduction. Unlike

Acemoglu et al. (2012), here I restrict my attention to the manufacturing sector of the US

economy because I do not have any lead time style proxy for other sectors.

I use the detailed benchmark input�output accounts from 2007, compiled by the Bureau

of Economic Analysis for the exercise in this section. BEA provides commodity-by- com-

modity direct requirements tables, where the typical (ij) entry captures the value of spending

on commodity i per dollar of production of commodity j. As detailed above, I restrict my at-

tention only to the manufacturing sector which gives me 237 sectors that roughly correspond

to four-digit NAICS level.

As argued before, I use lead time as a proxy for di�usion rates of di�erent sectors. The
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lead time of di�erent sectors is calculated by dividing unful�lled orders by value of shipments

in a given month. I use the monthly average lead time value over the period 1991-2008 for

the calculations in this section. The lead time values are not available at 4-digit level and I

can only calculate it for 42 distinct sectors. These 42 sectors are both at 3 or 4-digit NAICS

level. This means that lead time is not available at the same disaggregated level as input-

output table which has 237 sectors. The 4-digit NAICS sectors in the direct requirements

that do not have a corresponding 4-digit lead time indicator, I assign them the lead time

value for 3-digit NAICS. This would give me similar di�usion rates for many sectors and

would thus lead to less di�erentiated di�usion rates on a �ner sectoral level.

Figure 7 shows the density plots of weighted out-degree for di�erent di�usion rates

depending on how we split up the economy based on sectoral lead times. The top-left panel

in this �gure corresponds to the case where we do not account for di�erent di�usion rates.

It is similar to the case presented in other network models like in Acemoglu et al(2012). The

top right panel corresponds to dividing sectors into two categories, those with lead time less

than 26 weeks and others with lead time more than 26 weeks. This gives us two di�erent

di�usion rates for the sectors in this economy where the di�usion adjusted weighted out-

degree are calculated from Γ1 and Γ2 as in equation 4.15. The bottom left panel similarly

corresponds to the case when we split sectors by lead time cuto�s 12, 24, 36 and above weeks.

Finally, the bottom right panel corresponds to the case with bins created using 4, 8, 12, 24

and above week slices of lead time.

What the results in the above graphs show is that once we start accounting for di�erential

di�usion rates, the sectors with very high weighted out-degree starts to fall. This makes it

di�cult to generate heavy tailed distribution of the di�usion adjusted weighted out-degree of

these sectors. As compared to the top left panel where the highest outdegree was roughly 15,

the bottom right panel has the highest out-degree of 8. What is more important is that the

entire density shifts to the left and thus making it even less likely to generate heavy-tailed

distribution.
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Another important point to notice here is that these plots are generated with limited

information in lead time values for many sectors. Since, the lead time data was available

for only 42 sectors, a lot of sectors get assigned to the same di�usion bin corresponding to

the parent NAICS level. Due to this problem a large number of sectors are present in the

�rst bin and hence in�ate the di�usion adjusted out-degrees to a certain level. But overall

the di�usion mechanism decreases the likelihood of generating a heavy tailed distribution of

outdegrees and thus also decreases the chances that a sectoral shock can generate aggregate

�uctuations.

5.2 Overview of the IP data

I use IP data for the years 1984-2007 for the analysis in this section. The data is restricted to

the above time period to keep the results comaparable to the exercise performed in Foerster,

Sarte andWatson (2012). The data corresponds to 3-digit industry level NAICS classi�cation

and reported for 26 sectors. It is possible to extend the analysis and use 117 sectors i.e. 4-

digit industry classi�cation as in Foerster, Sarte and Watson (2012) instead of current 26

sectors but we are restricted by data on lead time indicator as it is reported only at 3-digit

level.

The IP data is reported on a monthly frequency level but we restrict ourselves to quarterly

level. The quarterly value for IP indices are constructed by taking average over the monthly

values in that quarter. IPt denotes the aggregate IP value in time period t while IPit denotes

the IP value for sector i in period t. We will be working with growth rates of di�erent sectors

which are denoted by gt for the aggregate IP and as xit at the sectoral level. The growth

rates are then de�ned by gt = 400× ln (IPt/IPt−1) and xit = 400× ln (IPit/IPit−1).
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5.3 Setup: Factor Analysis

In this section, we perform both statistical as well as structural factor analysis to decompose

the aggregate �uctuations into aggregate and sectoral shocks. Let us �rst begin with the

statistical factor analysis. Let Xt denote the vector of sectoral growth rates xit in period t,

then the factor model can be written as:

Xt = ΛFt + ut (5.1)

where Ft is a k × 1 vector of latent factors, Λ is N × k matrix of factor loadings and ut

is N × 1 vector of sector speci�c idiosyncratic disturbances. As in classical factor analysis

Ft and ut are assumed to be mutually uncorrelated and i.i.d. with a diagonal covariance

matrix for ut. This allows us to express the covariance matrix of growth rates, Xt as ΣXX =

ΛΣFFΛ′+ΣXX , where ΣFF and ΣXX are covariance matrices of Ft and ut respectively. Since,

by construction, ΣXX is assumed to be diagonal, all covariance between di�erent sectors

is explained by the common factos Ft. We can use principal components to consistently

estimate the factors as discussed in Stock and Watson (2000) and then use penalized least-

square criterion to further select the number of factors. In the current exercise, I restrict the

number of factors to two to simplify the analysis and deliver comparable results. Although

the results are similar if we use just one common factor.

Now having estimated the common factors, we can use them to construct a measure for

importance of aggregate shocks. We can de�ne R2(F ) = w̄′ΛΣFFΛ′w̄/σ2
g as the contribution

of common factors to aggregate volatility where σ2
g is the variance of growth rate of aggregate

IP. The above formula comes from the assumption that aggregate growth rate gt ' w̄′Xt,

where we have further assumed that sectoral weights w̄, i.e. vector of contributions of sectors

to overall IP, is constant over time.

The above described statistical factor analysis misses one important point that sectoral

shocks can be ampli�ed through sectoral linkages as shown in Long and Plosser (1983),
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Horvath (1998), Carvalho (2007) and other related papers. What this implies is that in the

absence of a structural model, idiosyncratic sectoral shocks ampli�ed through inter-sectoral

linkages would appear as common shocks under statistical factor analysis. But we can use

the structural models presented in the Section 3 to separate the network contribution of

sectoral shocks from common shocks as done in Foerster, Sarte and Watson (2012).

We have to look at the one-period di�usion model or Long and Plosser (1983) model for

carrying out structural factor analysis. The sectoral growth rate Xt is given by:

Xt = [I − (1− α)Γ1L]−1 εt (5.2)

Now, sectoral innovations εt consist of both aggregate as well as sectoral shocks, given

by:

εt = ΛSSt + νt (5.3)

where St is a k × 1 vector of latent factors and correspond to aggregate shocks, ΛS is

N × k matrix of factor loadings while νt is N × 1 vector of sector speci�c idiosyncratic

disturbances. We further assume that St and νt are mutually uncorrelated and i.i.d and the

idiosyncratic shocks, νt are uncorrelated i.e. the covariance matrix Σνν is diagonal.

The evolution of sectoral output growth can now be expressed as a factor model:

Xt = Λ(L)Ft + ut (5.4)

where

Λ(L) = [I − (1− α)Γ1L]−1 ΛS (5.5)

and Ft = St, and
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Table 1: Contribution Aggregate shocks

Data 1PD UDR
(1) (2) (3)

R2(S) 72% 63% 73%

ut = [I − (1− α)Γ1L]−1 νt (5.6)

From the above equation, one can see that sectoral shocks are ampli�ed through inter-

sectoral linkages captured by the term [I − (1− α)Γ1L]−1. Ignoring the above term is the

main reason for over-estimation of contribution of aggregate shocks in aggregate volatility.

To overcome this problem, one can apply factor model to εt, instead of Xt. The only problem

is that one does not observe εt but it is possible to apply factor decomposition on its empirical

counterpart given by:

εt = [I − (1− α)Γ1L]Xt (5.7)

A similar analysis as listed above is done in Foerster, Sarte and Watson (2012). The

additional exercise in this paper is is to perform a similar analysis for di�usion adjusted

model. In case of di�usion adjusted model, we decompose:

εt =
[
I − (1− α)

[
Γ1L + ...+ ΓPL

P
]]
Xt (5.8)

5.4 Results

The results of the di�erent models discussed above are presented in table 1. The contribution

of aggregate shocks is captured by the value R2(S). Column 1 corresponds to the case where

we apply factor analysis to raw data. In this case, the sectoral inter-linkages do not play any

role and we see that common shocks have a 72% contribution to overall volatility.

The second column in the same table corresponds to one period di�usion model or Long
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and Plosser (1983) model. Since this model takes into account the inter-sectoral linkages,

the contribution of common shocks goes down and now only contribute 63% to the aggregate

volatility. Although, the contribution of common shocks has gone down in this case but not

as much as reported in Foerster, Sarte and Watson (2012). The reason being that the shocks

a�ect downstream sectors one period later and hence attenuates some of the ampli�cation

mechanism present in their paper.

The third column needs some explanation because I have used unequal di�usion rate

model in this case. I have divided the sectors into two- one with lead time less than a quarter

and another with lead time more than one quarter i.e. Γ is split into Γ1 and Γ2. Then I

applied factor method to decompose εt constructed using the �lter I− (1−α) [Γ1L + Γ2L
2].

In this case, the contribution of common shocks goes up due to the fact that sectoral shocks

a�ect few sectors in one time period. To compensate this and achieve higher correlation

between sectors, the common shocks now need to be larger to achieve the same aggregate

volatility.

6 Conclusion

This paper started out to explore the idea of shock di�usion in a multi-sector economy. I

provide empirical evidence on how sectors di�er in the time they take to react to a given

shock, which generates unequal response rate (or unequal di�usion) across sectors. Using

two canonical models, I then show how a lagged production function can be used to model

shock di�usion in the context of a production economy. I �nd that 1-period di�usion mod-

els generate less aggregate volatility when compared to 0-period di�usion models that use

contemporaneous production linkages.

I then developed a more realistic di�usion model where di�erent sectors have di�er-

ent production horizons and thus di�erent di�usion rates. Under this setup, I �nd that

introduction of shock di�usion partially closes down the important channel for shock ampli-
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�cation as present in the single period models with contemporaneous production linkages.

Since di�erent sectors have di�erent shock di�usion rates, the shock to sector i at time t

a�ects di�erent sectors at di�erent periods of time, thus reducing the impact of this shock

on aggregate volatility in any single period. I later use this model to pin down the asymp-

totic properties of aggregate volatility as the number of sectors goes to in�nity and again

ask the question- whether idiosyncratic sectoral shocks can generate aggregate volatility in

the economy after controlling for di�erential shock di�usion? The short answer is yes, but

with a much stricter requirement. The requirement is that the di�usion adjusted weighted

out-degree measure should have a heavy tailed distribution where this adjusted weighted

out-degree depends on both the network structure and di�usion rates of di�erent sectors.

In the end, the paper presents quantitative evidence to show that accounting for di�usion

channel reduces the importance of inter-sectoral networks in amplifying idiosyncratic sectoral

shocks. The contribution of sectoral shocks in aggregate volatility is not as high as argued

in some of the recent papers. This gives important reason to further examine the di�usion

channel in greater detail as it will have important implications for the direction of this

literature.
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